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1 Introduction to North Carolina’s Value-Added Reporting

The term “value-added” refers to a statistical analysis used to measure students’ academic growth.
Conceptually and as a simple explanation, value-added or growth measures are calculated by comparing
the exiting achievement to the entering achievement for a group of students. Although the concept of
growth is easy to understand, the implementation of a growth model is more complex.

First, there is not just one growth model; there are multiple growth models depending on the
assessment, students included in the analysis, and level of reporting (district, school, or teacher). For
each of these models, there are business rules to ensure the growth measures reflect the policies and
practices selected by the State of North Carolina.

Second, in order to provide reliable growth measures, growth models must overcome non-trivial
complexities of working with student assessment data. For example, students do not have the same
entering achievement, students do not have the same set of prior test scores, and all assessments have
measurement error because they are estimates of student knowledge. EVAAS growth models have been
in use and available to educators in states since the early 1990s. These growth models were among the
first in the nation to use sophisticated statistical models that addressed these concerns.

Third, the growth measures are relative to students’ expected growth, which is in turn determined by
the growth that is observed within the actual population of North Carolina test-takers in a subject,
grade, and year. Interpreting the growth measures in terms of their distance from expected growth
provides a more nuanced, and statistically robust, interpretation.

With these complexities in mind, the purpose of this document is to guide you through North
Carolina’s value-added modeling based on the statistical models, business rules, policies, and
practices selected by the State of North Carolina and currently implemented by EVAAS. This document
includes details and decisions in the following areas:

e Conceptual and technical explanations of analytic models
e Definition of expected growth

e Classifying growth into categories for interpretation

e Explanation of district, school, and teacher composites

e Input data

e Business rules

The state of North Carolina has provided EVAAS growth measures to North Carolina districts, schools,
and teachers since 2005. By 2006, district and school value-added reporting was available statewide,
and in 2008, Teacher Value-Added reports also became available for parts of the state. The first year of
statewide implementation for teacher value-added reporting that included all teachers with students
taking the state assessments in grades 4—8 was 2011.

These reports are delivered through the EVAAS web application available at http://ncdpi.sas.com.
Although the underlying statistical models and business rules supporting these reports are sophisticated
and comprehensive, the web reports are designed to be user-friendly and visual so that educators and
administrators can quickly identify strengths and opportunities for improvement and then use these
insights to inform curricular, instructional, and planning supports.
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2 Statistical Models

2.1 Overview of Statistical Models

The conceptual explanation of value-added reporting is simple: compare students’ exiting achievement
with their entering achievement over two points in time. In practice, however, measuring student
growth is more complex. Students start the school year at different levels of achievement. Some
students move around and have missing test scores. Students might have “good” test days or “bad” test
days. Tests, standards, and scales change over time. A simple comparison of test scores from one year to
the next does not incorporate these complexities. However, a more robust value-added model, such as
the one used in North Carolina, can account for these complexities and scenarios.

North Carolina’s value-added models offer the following advantages:

e The models use multiple subjects and years of data. This approach minimizes the influence of
measurement error inherent in all academic assessments.

e The models can accommodate students with missing test scores. This approach means that
more students are included in the model and represented in the growth measures.
Furthermore, because certain students are more likely to have missing test scores than others,
this approach provides less biased growth measures than growth models that cannot
accommodate student with missing test scores.

e The models can accommodate tests on different scales. This approach gives flexibility to
policymakers to change assessments as needed without a disruption in reporting. It permits
more tests to receive growth measures, particularly those that are not tested every year.

e The models can accommodate team teaching or other shared instructional practices. This
approach provides a more accurate and precise reflection of student learning among
classrooms.

These advantages provide robust and reliable growth measures to districts, schools, and teachers. This
means that the models provide valid estimates of growth given the common challenges of testing data.
The models also provide measures of precision along with the individual growth estimates taking into
account all of this information.

Furthermore, because this robust modeling approach uses multiple years of test scores for each student
and includes students who are missing test scores, EVAAS value-added measures typically have very low
correlations with student characteristics. It is not necessary to make direct adjustments for student
socioeconomic status or demographic flags because each student serves as their own control. In other
words, to the extent that background influences persist over time, these influences are already
represented in the student’s data. As a 2004 study by The Education Trust stated, specifically with
regard to the EVAAS modeling:

[11f a student’s family background, aptitude, motivation, or any other possible factor has
resulted in low achievement and minimal learning growth in the past, all that is taken into
account when the system calculates the teacher’s contribution to student growth in the present.

Source: Carey, Kevin. 2004. “The Real Value of Teachers: Using New Information about Teacher
Effectiveness to Close the Achievement Gap.” Thinking K-16 8(1):27.
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In other words, although technically feasible, adjusting for student characteristics in sophisticated
modeling approaches is typically not necessary from a statistical perspective, and the value-added
reporting in North Carolina does not make any direct adjustments for students’ socioeconomic or
demographic characteristics. Through this approach, the North Carolina Department of Public
Instruction does not provide growth models to educators based on differential expectations for groups
of students based on their backgrounds.

Based on North Carolina’s state assessment program, there are two approaches to providing growth
measures.

e The gain model (also known as the multivariate response model or MRM) is used for tests
given in consecutive grades, such as EOG Mathematics and Reading assessments in grades 3—7
and the Early Literacy assessments in grades K-2.

e The predictive model (also known as univariate response model or URM) is used when a test is
given in non-consecutive grades or when performance from previous tests is used to predict
performance on another test. This includes EOG Mathematics and Reading assessments in grade
8, EOG Science assessments in grades 5 and 8, end-of-course (EOC) exams, Career and Technical
Education (CTE) tests, and college readiness assessments such as PSAT, SAT, and ACT.

There is another model, which is similar to the predictive model except that it is intended as an
instructional tool for educators serving students who have not yet taken an assessment.

e The projection model is used for all assessments and provides a probability of obtaining a
particular score or higher on a given assessment for individual students.

The following sections provide technical explanations of the models. The online Help within the EVAAS
web application is available at https://ncdpi.sas.com, and it provides educator-focused descriptions of
the models.

2.2 Gain Model

2.2.1 Overview

The gain model measures growth between two points in time for a group of students; this is the case for
tests given in consecutive grades such as EOG Mathematics and Reading assessments in grades 3—7 and
the Early Literacy in grades K-2.! More specifically, the gain model measures the change in relative
achievement for a group of students based on the statewide achievement from one point in time to
the next. For state summative assessments, growth is typically measured from one year to the next
using the available consecutive grade assessments. For Early Literacy assessments, growth is measured
from the beginning of the year to the end of the year within the same grade for first and second grades
and from the middle of the year to the end of the year within the same grade for kindergarten. Expected
growth means that students maintained their relative achievement among the population of test-takers,
and more details are available in Section 3.

1 Starting with the 2022-23 reporting, growth measures for EOG Mathematics and Reading in grade 8 no longer use the gain model. However,
the description here applies to previous years’ reporting for those assessments.
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There are three separate analyses for EVAAS reporting based on the gain model: one each for districts,
schools, and teachers. The district and school models are essentially the same; they perform well with
the large numbers of students characteristic of districts and most schools. The teacher model uses a
version adapted to the smaller numbers of students typically found in teachers’ classrooms.

In statistical terms, the gain model is known as a linear mixed model and can be further described as a
multivariate repeated measures model. These models have been used for value-added analysis for
almost three decades, but their use in other industries goes back much further. These models were
developed to use in fields with very large longitudinal data sets that tend to have missing data.

Value-added experts consider the gain model to be among one of the most statistically robust and
reliable models. The references below include foundational studies by experts from RAND Corporation,
a non-profit research organization:

e On the choice of a complex value-added model: McCaffrey, Daniel F., and J.R. Lockwood. 2008.
“Value-Added Models: Analytic Issues.” Prepared for the National Research Council and the
National Academy of Education, Board on Testing and Accountability Workshop on Value-Added
Modeling, Nov. 13-14, 2008, Washington, DC.

e On the advantages of the longitudinal, mixed model approach: Lockwood, J.R. and Daniel
McCaffrey. 2007. “Controlling for Individual Heterogeneity in Longitudinal Models, with
Applications to Student Achievement.” Electronic Journal of Statistics 1:223-252.

e On the insufficiency of simple value-added models: McCaffrey, Daniel F., B. Han, and J.R.
Lockwood. 2008. “From Data to Bonuses: A Case Study of the Issues Related to Awarding
Teachers Pay on the Basis of the Students' Progress.” Presented at Performance Incentives:
Their Growing Impact on American K-12 Education, Feb. 28-29, 2008, National Center on
Performance Incentives at Vanderbilt University.

2.2.2 Why the Gain Model is Needed

A common question is why growth cannot be measured with a simple gain model that measures the
difference between the current year’s scores and prior year’s scores for a group of students. The
example in Figure 1 illustrates why a simple approach is problematic.

Assume that 10 students are given a test in two different years with the results shown in Figure 1. The
goal is to measure academic growth (gain) from one year to the next. Two simple approaches are to
calculate the mean of the differences or to calculate the differences of the means. When there is no
missing data, these two simple methods provide the same answer (5.8 on the left in Figure 1). When
there is missing data, each method provides a different result (6.9 versus 4.6 on the right in Figure 1).
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Figure 1: Scores without Missing Data, and Scores with Missing Data

Previous Current Previous Current
Student Score Score Gain Student Score Score Gain
1 51.9 74.8 229 1 51.9 74.8 22.9
2 37.9 46.5 8.6 2 46.5
3 55.9 61.3 5.4 3 55.9 61.3 5.4
4 52.7 47.0 -5.7 4 47.0
5 53.6 50.4 -3.2 5 53.6 50.4 -3.2
6 23.0 35.9 12.9 6 23.0 35.9 12.9
7 78.6 77.8 -0.8 7 78.6 77.8 -0.8
8 61.2 64.7 3.5 8 61.2 64.7 35
9 47.3 40.6 -6.7 9 47.3 40.6 -6.7
10 37.8 58.9 21.1 10 37.8 58.9 21.1
Column Column
Mean 50.0 55.8 5.8 Mean 51.2 55.8 6.9
Difference between Current and Difference between Current and
Previous Score Means 5.8 Previous Score Means 4.6

A more sophisticated model can account for the missing data and provide a more reliable estimate of
the gain. As a brief overview, the gain model uses the correlation between current and previous scores
in the non-missing data to estimate means for all previous and current scores as if there were no missing
data. It does this without explicitly imputing values for the missing scores. The difference between these
two estimated means is an estimate of the average gain for this group of students. In this example, the
gain model calculates the estimated difference to be 5.8. Even in a small example such as this, the
estimated difference is much closer to the difference with no missing data than either measure obtained
by the mean of the differences (6.9) or the difference of the means (4.6). This method of estimation has
been shown, on average, to outperform both of the simple methods.? This small example only
considered two grades and one subject for 10 students. Larger data sets, such as those used in the
actual value-added analyses for the state, provide better correlation estimates by having more student
data, subjects, and grades. In turn, these provide better estimates of means and gains.

This simple example illustrates the need for a model that will accommodate incomplete data sets, which
all student testing sets are. The next few sections provide more technical details about how the gain
model calculates student growth.

1 See, for example, S. Paul Wright, “Advantages of a Multivariate Longitudinal Approach to Educational Value-Added Assessment without
Imputation,” Paper presented at National Evaluation Institute, 2004. Available online at https://evaas.sas.com/support/EVAAS-
AdvantagesOfAMultivariateLongitudinalApproach.pdf.
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2.2.3 Common Scale in the Gain Model

2.2.3.1 Why the Model Uses Normal Curve Equivalents

The gain model estimates academic growth as a “gain,” or the difference between two measures of
achievement from one point in time to the next. For such a difference to be meaningful, the two
measures of achievement (that is, the two tests whose means are being estimated) must measure
academic achievement on a common scale. Even for some vertically scaled tests, there can be different
growth expectations for students based on their entering achievement. A reliable alternative whether
tests are vertically scaled is to convert scale scores to normal curve equivalents (NCEs).

An NCE distribution is similar to a percentile one. Both distributions provide context as to whether a
score is relatively high or low compared to the other scores in the distribution. In fact, NCEs are
constructed to be equivalent to percentile ranks at 1, 50 and 99 and to have a mean of 50 and standard
deviation of approximately 21.063.

However, NCEs have a critical advantage over percentiles for measuring growth: NCEs are on an equal-
interval scale. This means that for NCEs, unlike percentile ranks, the distance between 50 and 60 is the
same as the distance between 80 and 90. This difference between the distributions is evident below in
Figure 2.

Figure 2: Distribution of Achievement: Scores, NCEs and Percentile Rankings

Distribution
of Scores

Normal Curve
Equivalents

Percentile
E uivalents 1 1 1 1 1 11 1 1 1 1 1
q 1 5 10 20 3040506070 80 90 95 99

1 10 20 30 40 50 60 70 80 90 99

Furthermore, percentile ranks are usually truncated below 1 and above 99, and NCEs can range below 0
and above 100 to preserve the equal-interval property of the distribution and to avoid truncating the
test scale. In a typical year among North Carolina’s state assessments, the average maximum NCE is
typically around 115. Although the gain model does not use truncated values, which could create an
artificial floor or ceiling in students’ test scores, the web reporting might show NCEs as integers from 1
to 99 for display purposes.
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Each NCE distribution is based on a specific assessment, test, subject, and time point. For example, the
NCE distribution for 2023 EOG Math in grade 5 is constructed separately from the NCE distribution for
2023 EOG Math in grade 4. The Early Literacy assessments for K-2 have their own NCE distribution as
well.

2.2.3.2 Sample Scenario: How to Calculate NCEs in the Gain Model

The NCE distributions used in the gain model are based on a reference distribution of test scores in
North Carolina. This reference distribution is the distribution of scores on a state-mandated test for all
students in a given year. By definition, the mean (or average) NCE score for the reference distribution is
50 for each grade and subject. For identifying the other NCEs, the gain model uses a method that does
not assume that the underlying scale is normal. This method ensures an equal-interval scale, even if the
testing scales are not normally distributed.

Table 1 provides an example of how the gain model converts scale scores to NCEs. The first five columns
of the table are based on a tabulated distribution of about 115,000 test scores from North Carolina data.
In a given subject, grade, and year, the tabulation shows, for each given score, the number of students
who scored that score (“Frequency”) as well as the percentage (“Percent”) that frequency represents
out of the entire population of test-takers. The table also tabulates the “Cumulative Frequency as the
number of students who made that score or lower and its associated percentage (“Cumulative
Percent”).

The next column, “Percentile Rank,” converts each score to a percentile rank. As a sample calculation using
the data in Table 1 below, the score of 425 has a percentile rank of 45.2. The data show that 43.5% of
students scored below 425 while 46.9% of students scored at or below 425. To calculate percentile ranks
with discrete data, the usual convention is to consider half of the 3.4% reported in the Percent column to
be “below” the cumulative percent and “half” above the cumulative percent. To calculate the percentile
rank, half of 3.4% (1.7%) is added to 43.5% from Cumulative Percent to give you a percentile rank of 45.2,
as shown in the table.

Table 1: Converting Tabulated Test Scores to NCE Values

Score Frequency Cumulative Percent Cumulative Percentile Z-Score NCE
Frequency Percent Rank
418 3,996 48,246 31 36.9 35.4 -0.375  42.10
420 4,265 52,511 3.3 40.2 38.5 -0.291 43.87
423 4,360 56,871 33 43.5 41.8 -0.206  45.66
425 4,404 61,275 3.4 46.9 45.2 -0.121 47.46
428 4,543 65,818 3.5 50.4 48.6 -0.035  49.27
430 4,619 70,437 3.5 53.9 52.1 0.053  51.12
432 4,645 75,082 3.6 57.4 55.7 0.143 53.00

Page 7



NCEs are obtained from the percentile ranks using the normal distribution. The table of the standard
normal distribution (found in many textbooks3) or computer software (for example, a spreadsheet)
provides the associated Z-score from a standard normal distribution for any given percentile rank. NCEs
are Z-scores that have been rescaled to have a “percentile-like” scale. As mentioned above, the NCE
distribution is scaled so that NCEs exactly match the percentile ranks at 1, 50, and 99. To do this, each Z-
score is multiplied by approximately 21.063 (the standard deviation on the NCE scale) and then 50 (the
mean on the NCE scale) is added.

In previous years, the mCLASS assessment used book levels, which had a different process for converting
to NCEs. The current Early Literacy assessment uses scale scores, so the process for converting to NCEs is
similar to the EOG assessments.

With the test scores converted to NCEs, growth is calculated as the difference from one year and grade
to the next in the same subject for a group of students. This process is explained in more technical detail
in the next section.

2.2.3.3 How NCEs are Calculated for Non-Numeric Scales in Early Literacy Assessments

NCEs can also be created for assessments where the underlying scale is not inherently numeric in
nature. One such assessment is the K-2 Text Reading and Comprehension assessment, which presents
student achievement results in book levels and performance levels. Book levels range from Print
Concepts (PC), Reading Behaviors (RB), B, C, and so on up to U. PC is the lowest possible book level and
U is the highest possible book level on the distribution of possible book levels. Furthermore, each book
level has three performance levels corresponding to the student’s reading and comprehension level of
the text: Frustrational, Instructional, and Independent. Even though book levels and performance levels
are non-numeric, the combination of the two provides the measured reading and comprehension ability
of the test taker.

The frequencies of all observed book levels and performance levels of a population of test takers can be
aggregated in an overall scoring distribution where each book and performance level are translated to
corresponding percentiles and NCEs just as the case with other assessments that report numeric scale
scores. NCEs for the K-2 Assessment in NC are calculated by grade and benchmark period: Beginning-of-
Year (BOY), Middle-of-Year (MQY), and End-of-Year (EQY).

Growth for the Early Literacy assessments is the difference in NCEs from a starting benchmark period
(MOY for Kindergartners, BOY for 1st and 2nd grade) to the EQY benchmark period. The average NCE for
a district, school, or classroom can be compared to the overall amount of growth exhibited in the state,
which represents a “normal” year’s growth, otherwise known as the growth standard.

3 See, for example, the inside front cover of William Mendenhall, Richard L. Scheaffer, and Dennis D. Wackerly, Mathematical Statistics with
Applications (Boston: Duxbury Press, 1986).
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2.2.4 Technical Description of the Gain Model

2.2.4.1 Definition of the Linear Mixed Model

As a linear mixed model, the gain model for district, school, and teacher value-added reporting is
represented by the following equation in matrix notation:

y=XB+Zv+e€ (1)

v (in the growth context) is the m X 1 observation vector containing test scores (usually NCEs) for all
students in all academic subjects tested over all grades and years.

X is a known m X p matrix that allows the inclusion of any fixed effects.
B is an unknown p X 1 vector of fixed effects to be estimated from the data.
Z is a known m X q matrix that allows the inclusion of random effects.

v is a non-observable g X 1 vector of random effects whose realized values are to be estimated from
the data.

€ is a non-observable m X 1 random vector variable representing unaccountable random variation.

Both v and € have means of zero, that is, E(v = 0) and E(e = 0). Their joint variance is given by:

v G 0
Var [6] =l R] (2)
where R is the m X m matrix that reflects the amount of variation in and the correlation among the

student scores residual to the specific model being fitted to the data, and G is the g X g variance-
covariance matrix that reflects the amount of variation in and the correlation among the random

effects. If (v, €) are normally distributed, the joint density of (y, ) is maximized when 8 has value b and

v has value u given by the solution to the following equations, known as Henderson’s mixed model
equations:*

XTR™x  XTR'Z “b] _ [XTR‘ly 3)
ZTR™'X ZTRZ+G 'llu ZTR™ 1y
Let a generalized inverse of the above coefficient matrix be denoted by

X"R7'X  X"R7'Z ]‘ _ [G ClZ] —c ()
ZTR™'X Z'™R7'Z+G1 Co1 Gy
If G and R are known, then some of the properties of a solution for these equations are:

1. Equation (5) below provides the best linear unbiased estimator (BLUE) of the estimable linear
function, KT B, of the fixed effects. The second equation (6) below represents the variance of

4 McLean, Robert A., William L. Sanders, and Walter W. Stroup (1991). "A Unified Approach to Mixed Linear Models." The American Statistician,
Vol. 45, No. 1, pp. 54-64.
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that linear function. The standard error of the estimable linear function can be found by taking
the square root of this quantity.

E(KTB)=KTh
Var(KTh) = (KT)C;1K
2. Equation (7) below provides the best linear unbiased predictor (BLUP) of v.
E(w|u) =u
Var(u —v) = C,,
where u is unique regardless of the rank of the coefficient matrix.

3. The BLUP of a linear combination of random and fixed effects can be given by equation (9)
below provided that K7 is estimable. The variance of this linear combination is given by
equation (10).

E(KKTB+MTv |u) =KTb+ MTu
Var(KT(b— B) + MT(u —v)) = (KTMT)C(KTMT)T

4. With G and R known, the solution for the fixed effects is equivalent to generalized least squares,
and if v and € are multivariate normal, then the solutions for § and v are maximum likelihood.

5. If G and R are not known, then as the estimated G and R approach the true G and R, the
solution approaches the maximum likelihood solution.

6. If vand € are not multivariate normal, then the solution to the mixed model equations still
provides the maximum correlation between v and u.

2.2.4.2 District and School Models

The district and school gain models do not contain random effects; consequently, the Zv term drops out
in the linear mixed model. The X matrix is an incidence matrix (a matrix containing only zeros and ones)
with a column representing each interaction of school (in the school model), subject, grade, and year of
data. The fixed-effects vector 8 contains the mean score for each school, subject, grade, and year with
each element of 8 corresponding to a column of X. Since gain models are generally run with each school
uniquely defined across districts, there is no need to include districts in the model.

Unlike the case of the usual linear model used for regression and analysis of variance, the elements of €
are not independent. Their interdependence is captured by the variance-covariance matrix, which is also
known as the R matrix. Specifically, scores belonging to the same student are correlated. If the scores in
y are ordered so that scores belonging to the same student are adjacent to one another, then the R
matrix is block diagonal with a block, R;, for each student. Each student’s R; is a subset of the “generic”
covariance matrix R that contains a row and column for each subject and grade. Covariances among
subjects and grades are assumed to be the same for all years (technically, all cohorts), but otherwise the
R, matrix is unstructured. Each student’s R; contains only those rows and columns from R, that match

(5)
(6)

(7)
(8)

(9)

(10)

Page 10



the subjects and grades for which the student has test scores. In this way, the gain model is able to use
all available scores from each student.

Algebraically, the district gain model is represented as:

Yijkid = Hjkia + €ijkia (11)

where y;jiq represents the test score for the i" student in the j* subject in the k" grade during the
It" year in the dt" district. Ujkia is the estimated mean score for this particular district, subject, grade,
and year. €;jyq is the random deviation of the it" student’s score from the district mean.

The school gain model is represented as:

Vijiis = Hjkis T Eijkis (12)
This is the same as the district analysis with the addition of the subscript s representing st" school.

The gain model uses multiple years of student testing data to estimate the covariances that can be
found in the matrix R,. This estimation of covariances is done within each level of analyses and can
result in slightly different values within each analysis.

Solving the mixed model equations for the district or school gain model produces a vector b that
contains the estimated mean score for each school (in the school model), subject, grade, and year. To
obtain a value-added measure of average student growth, a series of computations can be done using
the students from a school in a particular year and their prior and current testing data. The model
produces means in each subject, grade, and year that can be used to calculate differences in order to
obtain gains. Because students might change schools from one year to the next (in particular when
transitioning from elementary to middle school, for example), the estimated mean score for the prior
year/grade uses students who existed in the current year of that school. Therefore, mobility is taken into
account within the model. Growth of students is computed using all students in each school including
those that might have moved buildings from one year to the next.

The computation for obtaining a growth measure can be thought of as a linear combination of fixed
effects from the model. The best linear unbiased estimate for this linear combination is given by
equation (5). The growth measures are reported along with standard errors, and these can be obtained
by taking the square root of equation (6) as described above.

2.2.4.3 Teacher Model

The teacher estimates use a more conservative statistical process to lessen the likelihood of
misclassifying teachers. Each teacher’s growth measure is assumed to be equal to either the state
average or (for Early Literacy assessments) the average based on the population of test-takers in a
specific year, subject, and grade until the weight of evidence pulls them either above or below that
average. The model also accounts for the percentage of instructional responsibility the teacher has for
each student during the course of each school year. Furthermore, the teacher model is “layered”, which
means that:

e Students’ performance with both their current and previous teacher effects are incorporated.
e For each school year, the teacher estimates are based students