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1 Introduction to Value-Added Reporting in North Carolina 
Since 2001, EVAAS growth reporting (or value-added reporting) has been available to North Carolina 
educators and has also been available statewide since 2006. The purpose of EVAAS is to support 
educators with school improvement through both reflective and proactive planning tools. 

Since its inception, EVAAS growth measures focused on the growth of students over time rather than 
their achievement level. EVAAS represented a paradigm shift for educators and policymakers and, in 
identifying the more effective practices and less effective practices, educators receive personalized 
feedback, which they could then leverage to improve the academic experiences of their students.  

The term “value-added” refers to a statistical analysis used to measure the amount of academic growth 
students make from year to year with a district, school, or teacher. Conceptually and as a simple 
explanation, a value-added measure is calculated in the following manner:  

• Growth = current achievement/current results compared to all prior achievement/prior results 
with achievement being measured by a quality assessment such as the EOG tests. 

Although the concept of growth is easy to understand, the implementation of a statistical model of 
growth is more complex. There are several decisions related to the available modeling, local policies and 
preferences, and business rules. Key considerations in the decision-making process include: 

• What data are available? 

• Given the available data, what types of models are possible? 

• What is the growth expectation? 

• How is effectiveness defined in terms of a measure of certainty? 

• What are the business rules and policy decisions that impact the way the data are processed? 

The purpose of this document is to guide you through the value-added modeling based on the statistical 
approaches, policies, and practices selected by the North Carolina Department of Public Instruction and 
currently implemented by SAS. This document describes the input data, modeling, and business rules for 
district, school, and teacher value-added reporting in North Carolina. 
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2 Data Inputs 
This section provides details about the input data used in the North Carolina value-added model as well 
as the student, teacher, and school information provided in the assessment files. 

2.1 Determining Suitability of Assessments 

2.1.1 Current Assessments 

To be used appropriately in any value-added analyses, the scales of these tests must meet three criteria. 
(Additional details about each of these requirements are provided in Section 8.) 

• There is sufficient stretch in the scales to ensure that growth can be measured for both low-
achieving students as well as high-achieving students. A floor or ceiling in the scales could 
disadvantage educators serving either low-achieving or high-achieving students.  

• The test is designed to assess the academic standards, so it is possible to measure growth with 
the assessment in that subject/grade/year. More information can be found at the following link: 
http://www.dpi.state.nc.us/curriculum. 

• The scales are sufficiently reliable from one year to the next. This criterion typically is met 
when there are a sufficient number of items per subject/grade/year, and this will be monitored 
each subsequent year that the test is given. 

These criteria are monitored by SAS and psychometricians at NCDPI. 

2.2  Assessment Data Used in North Carolina 

2.2.1 Assessments 

SAS receives the following assessments for EVAAS reporting: 

• End-of-grade Math and Reading in grades 3–8 

• End-of-grade Science in grades 5 and 8 

• End-of-course assessments in Biology, English II, Math 1, and Math 3  

• Reading assessments in K–2 

• North Carolina Final Exam assessments in various subjects 

• Career and Technical Education assessments in various subjects 

• ACT assessments in English, Math, Reading, Science, and Composite 

• SAT assessments in Evidence-Based Reading and Writing, Math, and Composite 

• PSAT assessments in Evidence-Based Reading and Writing and Math 

• AP assessments in various subjects 

The state End-of-Grade (EOG) tests are administered in the spring semester with the exception of EOG 
Reading for grade 3, which is tested in both fall and spring. The End-of-Course (EOC) assessments, North 
Carolina Final Exams (NCFEs), and Career and Technical Education assessments (CTEs) are typically given 

http://www.dpi.state.nc.us/curriculum
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in the fall and spring semesters with the occasional summer administration. The K-2 assessments are 
administered three times throughout the year. 

2.2.2 Student Identification Information 

SAS receives the following information from NCDPI: 

• Student last name 

• Student first name 

• Student date of birth 

• Student state ID number (Unique Student ID (USID)) 

2.2.3 Assessment Information Provided  

SAS also receives the following information from NCDPI:  

• Scale score 

• Test taken 

• Tested grade 

• Tested semester 

• District number 

• School number 

• Membership  
• Accountability Growth Membership 
• Partial Enrollment 

• Test Form 

• First Year English Learner (EL) 

At times, raw scores are provided for the NCFE, and pre-test scores are provided for the CTE 
assessments. 

2.3 Student Information 
Student information is used in creating the web application to assist educators analyze the data to 
inform practice and assist all students with academic growth. SAS receives this information in the form 
of various socioeconomic, demographic, and programmatic identifiers provided by NCDPI. Currently, 
these categories are as follows: 

• Academically or Intellectually Gifted (Y, N) 

• Gender (M, F) 

• English Learners (EL) (Y, 1, 2, U, N) 

• Economically Disadvantaged Students (Y, N) 

• Students with Disabilities (Y, N) 
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• Race 
• American Indian/Alaskan Native 
• Asian/Pacific Islander 
• Black (not Hispanic) 
• Hispanic 
• Two or More Races 
• White (not Hispanic) 

2.4 Teacher Information 
A high level of reliability and accuracy is critical for using value-added scores for both improvement 
purposes and high stakes decision-making. Before teacher value-added measures are calculated, 
teachers in North Carolina have the opportunity to complete roster verification to verify linkages 
between themselves and their students during the year. Roster verification captures different teaching 
scenarios where multiple teachers can share instruction. Verification makes teacher analyses much 
more reliable and accurate. 

Roster verification is completed within the EVAAS web application. NCDPI provides SAS with a file that 
contains the approved teacher-student linkage data entered into PowerSchool: 

• Teacher identification 
• Teacher Name  
• Teacher Unique ID 

• Student linking information 
• Student Last Name 
• Student First name 
• Unique Student ID (USID) 

• Course information linked to a tested subject via a course to subject mapping provided by DPI 

• District and School information (numbers) 

• Percentage of instructional responsibility derived from enrollment information provided by DPI 
(i.e., the date the student enrolled and the date the student left the course) 
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3 Value-Added Analyses 
As outlined in the introduction, the conceptual explanation of value-added reporting is the following:  

• Growth = current achievement/current results compared to all prior achievement/prior results 
with achievement being measured by a quality assessment such as the EOG 

In practice, growth must be measured using an approach that is sophisticated enough to accommodate 
many non-trivial issues associated with student testing data. Such issues include students with missing 
test scores, students with different entering achievement, and measurement error in the test. In North 
Carolina, EVAAS includes two main categories of value-added models, each comprised of District, 
School, and Teacher reports.  

• Multivariate Response Model (MRM) is used for tests given in consecutive grades, like the EOG 
Math and Reading in grades 3–8 or the K-2 early grade assessments.  

• Univariate Response Model (URM) is used for tests given in multiple grades, such as the EOC, 
NCFE or CTE assessments, or when performance from previous tests is used to predict 
performance on another test.  

Both models offer the following advantages: 

• The models include multiple subjects and grades for each student to minimize the influence of 
measurement error. 

• The models can accommodate tests on different scales. 

• The models can accommodate students with different sets of testing history. 

• The models do not impute any test scores for students who are missing test scores. 

• The models can accommodate team teaching or other shared instructional practices. 

Each model is described in greater detail in Section 3.1 (MRM) and Section 3.2 (URM) of this document. 

Because the EVAAS models use multiple subjects and grades for each student, it is typically not 
necessary to make direct adjustments for students’ background characteristics. In short, these 
adjustments are not necessary because each student serves as his or her own control. To the extent that 
socioeconomic and demographic influences persist over time, these influences are already represented 
in the student’s data. As a 2004 study by The Education Trust stated, specifically with regard to the 
EVAAS modeling: 

[I]f a student’s family background, aptitude, motivation, or any other possible factor has 
resulted in low achievement and minimal learning growth in the past, all that is taken into 
account when the system calculates the teacher’s contribution to student growth in the present. 

Source: Carey, Kevin. 2004. “The Real Value of Teachers: Using New Information about Teacher 
Effectiveness to Close the Achievement Gap.” Thinking K-16 8(1): 27. 

In other words, while technically feasible, adjusting for student characteristics in sophisticated modeling 
approaches is typically not necessary from a statistical perspective, and the value-added reporting in 
North Carolina does not make any direct adjustments for students’ socioeconomic or demographic 
characteristics. Through this approach, North Carolina avoids the problem of building a system that 
creates differential expectations for groups of students based on their backgrounds.  

The value-added reporting in North Carolina is available for districts, schools, and teachers. 
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3.1 Multivariate Response Model (MRM)  
EVAAS includes three separate analyses using the MRM approach, one each for districts, schools, and 
teachers. The district and school models are essentially the same. They perform well with the large 
numbers of students that are characteristic of districts and most schools. The teacher model uses a 
different approach that is more appropriate with the smaller numbers of students typically found in 
teachers’ classrooms. All three models are statistical models known as linear mixed models and can be 
further described as repeated measures models.  

The MRM is a gain-based model, which means it measures growth between two points in time for a 
group of students. The current growth expectation is met when a cohort of students from grade to 
grade maintains the same relative position with respect to statewide student achievement in that year 
for a specific subject and grade. (See Intra-Year Approach in Section 4 for more details.)  

The key advantages of the MRM approach can be summarized as follows: 

• All students with valid data are included in the analyses. Each student’s testing history is 
included without imputing any test scores. 

• By encompassing all students in the analyses, including those with missing test scores, the 
model provides the most realistic estimate of achievement available. 

• The model minimizes the influence of measurement error inherent in academic assessments by 
using multiple data points of student test history and multiple years of data.  

• The model uses scores from multiple tests, including those on different scales. 

• The model accommodates teaching scenarios where more than one teacher has responsibility 
for a student’s learning in a specific subject, grade, and year. 

• The model analyzes multiple consecutive grades and subjects simultaneously to improve 
precision and reliability.  

As a result of these advantages, the MRM is considered to be one of the most statistically robust and 
reliable approaches. The references below include studies by experts from RAND Corporation, a non-
profit research organization:  

• On the choice of a complex value-added model: McCaffrey, Daniel F., and J.R. Lockwood. 2008. 
“Value-Added Models: Analytic Issues.” Prepared for the National Research Council and the 
National Academy of Education, Board on Testing and Accountability Workshop on Value-Added 
Modeling, Nov. 13-14, 2008, Washington, DC.  

• On the advantages of the longitudinal, mixed model approach: Lockwood, J.R. and Daniel F. 
McCaffrey. 2007. “Controlling for Individual Heterogeneity in Longitudinal Models, with 
Applications to Student Achievement.” Electronic Journal of Statistics 1: 223-252.  

• On the insufficiency of simple value-added models: McCaffrey, Daniel F., B. Han, and J.R. 
Lockwood. 2008. “From Data to Bonuses: A Case Study of the Issues Related to Awarding 
Teachers Pay on the Basis of the Students' Progress.” Presented at Performance Incentives: 
Their Growing Impact on American K-12 Education, Feb. 28-29, 2008, National Center on 
Performance Incentives at Vanderbilt University. 

Despite such rigor, the MRM model is quite simple conceptually: Did a group of students maintain the 
same relative position with respect to statewide student achievement from one year to the next for a 
specific subject and grade? 
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3.1.1 MRM at the Conceptual Level 

An example data set with some description of possible value-added approaches might be helpful for 
conceptualizing how the MRM works. Assume that 10 students complete a test in two different years 
with the results shown in Figure 1. The goal is to measure academic growth (gain) from one year to the 
next. Two simple approaches are to calculate the mean of the differences or to calculate the differences 
of the means. When there is no missing data, these two simple methods provide the same answer (5.80 
on the left in Figure 1); however, when there is missing data, each method provides a different result 
(9.57 versus 3.97 on the right in Figure 1). A more sophisticated model is needed to address this 
problem. 

Figure 1: Scores without missing data, and scores with missing data 

Student Previous 
Score 

Current 
Score 

Gain  Student Previous 
Score 

Current 
Score 

Gain 

1 51.9 74.8 22.9  1 51.9   

2 37.9 46.5 8.6  2 37.9   

3 55.9 61.3 5.4  3 55.9 61.3 5.4 

4 52.7 47.0 -5.7  4 52.7 47.0 -5.7 

5 53.6 50.4 -3.2  5 53.6 50.4 -3.2 

6 23.0 35.9 12.9  6 23.0 35.9 12.9 

7 78.6 77.8 -0.8  7  77.8  

8 61.2 64.7 3.5  8  64.7  

9 47.3 40.6 -6.7  9 47.3 40.6 -6.7 

10 37.8 58.9 21.1  10 37.8 58.9 21.1 

Column 
Mean 

49.99 55.79 5.80  Column 
Mean 

45.01 54.58 3.97 

Difference between Current and 
Previous Score Means 

5.80  Difference between Current and 
Previous Score Means 

9.57 

The MRM uses the correlation between current and previous scores in the nonmissing data to estimate 
a mean for the set of all previous and all current scores as if there were no missing data. It does this 
without explicitly assigning values for the missing scores. The difference between these two estimated 
means is an estimate of the average gain for this group of students. In this small example, the estimated 
difference on the right is 5.71 when using the MRM approach to first estimate the means in each 
column and taking the difference. Even in a small example such as this, the estimated difference is much 
closer to the difference with no missing data (on the left) than either measure obtained by the mean of 
the differences (3.97) or difference of the means (9.57) on the right. This method of estimation has been 
shown, on average, to outperform both of the simple methods. 1 In this small example, there were only 

 
1 See, for example, S. Paul Wright, “Advantages of a Multivariate Longitudinal Approach to Educational Value-Added Assessment Without 

Imputation,” Paper presented at National Evaluation Institute, 2004. 
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two grades and one subject. Larger data sets, such as those used in actual EVAAS analyses for North 
Carolina, provide better correlation estimates by having more student data, subjects, and grades, which 
in turn provide better estimates of means and gains. 

This small example is meant to illustrate the need for a model that will accommodate incomplete data 
and provide a reliable measure of growth. It represents the conceptual idea of what is done with the 
school and district models. The teacher model is slightly more complex, and all models are explained in 
more detail below (in Section 3.1.3). The first step in the MRM is to define the scores that will be used in 
the model. 

3.1.2 Normal Curve Equivalents 

3.1.2.1 Why EVAAS Uses Normal Curve Equivalents in MRM 

The MRM estimates academic growth as a “gain,” or the difference between two measures of 
achievement from one point in time to the next. For such a difference to be meaningful, the two 
measures of achievement (that is, the two tests whose means are being estimated) must measure 
academic achievement on a common scale. Some test companies supply vertically scaled tests as a way 
to meet this requirement. A reliable alternative when vertically scaled tests are not available is to 
convert scale scores to normal curve equivalents (NCEs). 

NCEs are on a familiar scale because they are scaled to look like percentiles. However, NCEs have a 
critical advantage for measuring growth: they are on an equal-interval scale. This means that for NCEs, 
unlike percentile ranks, the distance between 50 and 60 is the same as the distance between 80 and 90. 
NCEs are constructed to be equivalent to percentile ranks at 1, 50, and 99, with the mean being 50 and 
the standard deviation being 21.063 by definition. Although percentile ranks are usually truncated 
above 99 and below 1, NCEs are allowed to range above 100 and below 0 to preserve their equal-
interval property and to avoid truncating the test scale.  

For example, in a typical year in North Carolina, the average maximum NCE is approximately 110, 
corresponding to percentile rankings above 99.0. However, for display purposes in the EVAAS web 
application and to avoid confusion among users with interpretation, NCEs are shown as integers from 1-
99. Truncating would create an artificial ceiling or floor, which might bias the results of the value-added 
measure for certain types of students. This forces the gain to be close to 0, or even negative, so the 
actual calculations use non-truncated numbers.  

The NCEs used in EVAAS analyses are based on a reference distribution of test scores in North Carolina. 
The reference distribution is the distribution of scores on a state-mandated test for all students in each 
year.  

By definition, the mean (or average) NCE score for the reference distribution is 50 for each grade and 
subject. “Growth” is the difference in NCEs from one year/grade to the next in the same subject. The 
growth standard, which represents a “normal” year’s growth, is defined by a value of zero. More 
specifically, it maintains the same position in the reference distribution from one year/grade to the next. 
It is important to reiterate that a gain of zero on the NCE scale does not indicate “no growth.” Rather, it 
indicates that a group of students in a district, school, or classroom has maintained the same position in 
the state distribution from one grade to the next. The expectation of growth is set by using each 
individual year to create NCEs. For more on Growth Expectation, see Section 4. 
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3.1.2.2 How EVAAS Uses NCEs in MRM 

There are multiple ways of creating NCEs. EVAAS MRM uses a method that does not assume that the 
underlying scale is normal since experience has shown that some testing scales are not normally 
distributed and this will ensure an equal interval scale. Table 1 provides an example of the way that 
EVAAS converts scale scores to NCEs.  

The first five columns of Table 1 show an example of a tabulated distribution of test scores from North 
Carolina data. The tabulation shows, for each possible test score, in a particular subject, grade, and year, 
how many students made that score (“Frequency”) and what percentage (“Percent”) that frequency was 
out of the entire student population. (In Table 1, the total number of students is approximately 
130,000). Also tabulated are the cumulative frequency (“Cum Freq,” which is the number of students 
who made that score or lower) and its associated percentage (“Cum Pct”). 

The next step is to convert each score to a percentile rank, listed as “Ptile Rank” on the right side of 
Table 1. If a particular score has a percentile rank of 48, this is interpreted to mean that 48% of students 
in the population had a lower score and 52% had a higher score. In practice, there is some percentage of 
students that will receive each specific score. For example, 2.8% of students received a score of 446 in 
Table 1. The usual convention is to consider half of that 2.8% to be “below” and half “above.” 
Subtracting 1.4% (half of 2.8%) from the 33.6% who scored below the score of 446 produces the 
percentile rank of 32.2 in Table 1. 

Table 1: Converting tabulated test scores to NCE values 

Score Frequency Cum Freq Percent Cum Pct Ptile Rank Z NCE 

446 3406 40544 2.8 33.6 32.2 -0.423 40.08 

447 5022 45566 4.2 37.8 35.7 -0.312 42.09 

448 3589 49155 3.0 40.8 39.2 -0.234 44.07 

449 5423 54578 4.5 45.3 43.0 -0.120 46.10 

450 3727 58305 3.1 48.3 46.8 -0.042 48.12 

451 6037 64342 5.0 53.4 50.9 0.084 50.26 

452 4023 68365 3.3 56.7 55.0 0.168 52.47 

NCEs are obtained from the percentile ranks using the normal distribution. Using a table of the standard 
normal distribution (found in many textbooks) or computer software (for example, a spreadsheet), one 
can obtain the associated Z-score from a standard normal distribution for any given percentile rank. 
NCEs are Z-scores that have been rescaled to have a “percentile-like” scale. Specifically, NCEs are scaled 
so that they exactly match the percentile ranks at 1, 50, and 99. This is accomplished by multiplying each 
Z-score by approximately 21.063 (the standard deviation on the NCE scale) and adding 50 (the mean on 
the NCE scale). NCEs are further adjusted by considering a statewide MRM model and accounting for 
missing test scores to ensure that the average achievement on the NCE scale is 50 for each subject and 
grade modeled. 
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3.1.2.3 How EVAAS Uses NCEs in the K-2 Assessment 

NCEs can also be created for assessments where the underlying scale is not inherently numeric in 
nature. One such assessment is the K-2 Text Reading and Comprehension assessment, which presents 
student achievement results in book levels and performance levels. Book levels range from Print 
Concepts (PC), Reading Behaviors (RB), B, C and so on up to U. PC is the lowest possible book level, and 
U is the highest possible book level on the distribution of possible book levels. Furthermore, each book 
level has three performance levels corresponding to the student’s reading and comprehension mastery 
of the text: Frustrational, Instructional, and Independent. Even though book levels and performance 
levels are non-numeric, the combination of the two provides the measured reading and comprehension 
ability of the test taker.  

The frequencies of all observed book levels and performance levels of a population of test takers can be 
aggregated in an overall scoring distribution where each book and performance level are translated to 
corresponding percentiles and NCEs just as the case with other assessments that report numeric scale 
scores. NCEs for the K-2 Assessment in North Carolina are calculated by grade and benchmark period: 
Beginning-of-Year (BOY), Middle-of-Year (MOY), and End-of-Year (EOY). For example, Figure 2 displays 
the NCEs associated with book and performance levels and the frequency of each level for the 2018 
Grade 2 EOY Text Reading and Comprehension assessment. 

 Figure 2: NCEs for the 2018 2nd Grade EOY Text Reading and Comprehension assessment 

 
Growth for the K-2 Assessment is the difference in NCEs from a starting benchmark period (MOY for 
Kindergartners, BOY for first and second grade) to the EOY benchmark period. The average NCE for a 
district, school or classroom can be compared to the overall amount of growth exhibited in the state, 
which represents a “normal” year’s growth, otherwise known as the growth standard.  
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3.1.3 Technical Description of the Linear Mixed Model and the MRM  

The linear mixed model for district, school, and teacher value-added reporting using the MRM approach 
is represented by the following equation in matrix notation:  

𝑦𝑦 = 𝑋𝑋𝑋𝑋+ 𝑍𝑍𝑍𝑍 + 𝜖𝜖 (1) 

𝑦𝑦 (in the EVAAS context) is the 𝑚𝑚 × 1 observation vector containing test scores (NCEs) for all students in 
multiple academic subjects tested over all grades and years.  

𝑋𝑋 is a known 𝑚𝑚× 𝑝𝑝  matrix that allows the inclusion of any fixed effects. Fixed effects are factors within 
the model that come from a finite population, such as all of the individual schools in the state of North 
Carolina. In the school model, there is a fixed effect for every school/year/subject/grade. This matrix 
would have a row for each of these combinations. 

𝑋𝑋 is an unknown 𝑝𝑝 × 1 vector of fixed effects to be estimated from the data.  

𝑍𝑍 is a known 𝑚𝑚 × 𝑞𝑞 matrix that allows for the inclusion of random effects. In contrast to fixed effects, 
random effects do not come from a fixed population but rather can be thought of as a random sample 
coming from a large population where not all individuals in that population are known. This is more 
appropriate for the teacher model for many reasons: not all teachers are included (e.g., small class 
sizes), new teachers start each year while others leave each year, etc. As such, teachers are treated as 
random factors in this model.  

𝑍𝑍 is a non-observable 𝑞𝑞 × 1 vector of random effects whose realized values are to be estimated from 
the data.  

𝜖𝜖 is a non-observable 𝑚𝑚 × 1 random vector variable representing unaccountable random variation.  

Both 𝑍𝑍 and 𝜖𝜖 have means of zero, that is, 𝐸𝐸(𝑍𝑍 =  0) and 𝐸𝐸(𝜖𝜖 =  0). Their joint variance is given by: 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝑍𝑍𝜖𝜖� = �𝐺𝐺 0
0 𝑅𝑅� 

(2) 

where 𝑅𝑅 is the 𝑚𝑚 × 𝑚𝑚 matrix that reflects the correlation among the student scores residual to the 
specific model being fitted to the data, and 𝐺𝐺 is the 𝑞𝑞 × 𝑞𝑞 variance-covariance matrix that reflects the 
correlation among the random effects. If (𝑍𝑍, 𝜖𝜖) are normally distributed, the joint density of (𝑦𝑦,𝑍𝑍) is 
maximized when 𝑋𝑋 has value 𝑏𝑏 and 𝑍𝑍 has value 𝑢𝑢 given by the solution to the following equations, 
known as Henderson’s mixed model equations:2 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍
𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍+ 𝐺𝐺−1

� �𝑏𝑏
𝑢𝑢
� = �𝑋𝑋

𝑇𝑇𝑅𝑅−1𝑦𝑦
𝑍𝑍𝑇𝑇𝑅𝑅−1𝑦𝑦

� (3) 

Let a generalized inverse of the above coefficient matrix be denoted by 

 
2 Sanders, William L., Arnold M. Saxton, and Sandra P. Horn. 1997. “The Tennessee Value-Added Assessment System: A Quantitative, 
Outcomes-Based Approach to Educational Assessment.” In Grading Teachers, Grading Schools, ed. Jason Millman, 137-162. Thousand Oaks, CA: 

Sage Publications. 
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�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍+ 𝐺𝐺−1
�
−

= �𝐶𝐶11 𝐶𝐶12
𝐶𝐶21 𝐶𝐶22

�= 𝐶𝐶 (4) 

If 𝐺𝐺 and 𝑅𝑅 are known, then some of the properties of a solution for these equations are: 

1. Equation (5) below provides the best linear unbiased estimator (BLUE) of the set of estimable 
linear function, 𝐾𝐾𝑇𝑇𝑋𝑋, of the fixed effects. The second equation (6) below represents the variance 
of that linear function. The standard error of the estimable linear function can be found by 
taking the square root of this quantity. 

𝐸𝐸(𝐾𝐾𝑇𝑇𝑋𝑋) = 𝐾𝐾𝑇𝑇𝑏𝑏 (5) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇𝑏𝑏) = (𝐾𝐾𝑇𝑇)𝐶𝐶11𝐾𝐾 (6) 

2. Equation (7) below provides the best linear unbiased predictor (BLUP) of 𝑍𝑍.  

𝐸𝐸(𝑍𝑍|𝑢𝑢) = 𝑢𝑢 (7) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢− 𝑍𝑍) = 𝐶𝐶22 (8) 

 where 𝑢𝑢 is unique regardless of the rank of the coefficient matrix. 

3. The BLUP of a linear combination of random and fixed effects can be given by equation (9) 
below provided that 𝐾𝐾𝑇𝑇𝑋𝑋 is estimable. The variance of this linear combination is given by 
equation (10).  

𝐸𝐸(𝐾𝐾𝑇𝑇𝑋𝑋+𝑀𝑀𝑇𝑇𝑍𝑍 |𝑢𝑢) = 𝐾𝐾𝑇𝑇𝑏𝑏+𝑀𝑀𝑇𝑇𝑢𝑢 (9) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇(𝑏𝑏−  𝑋𝑋) +𝑀𝑀𝑇𝑇(𝑢𝑢− 𝑍𝑍)) = (𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝐶𝐶(𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝑇𝑇 (10) 

4. With 𝐺𝐺 and 𝑅𝑅 known, the solution for the fixed effects is equivalent to generalized least squares, 
and if v and ϵ are multivariate normal, then the solutions for β and v are maximum likelihood. 

5. If 𝐺𝐺 and 𝑅𝑅 are not known, then as the estimated 𝐺𝐺 and 𝑅𝑅 approach the true 𝐺𝐺 and 𝑅𝑅, the 
solution approaches the maximum likelihood solution. 

6. If 𝑍𝑍 and 𝜖𝜖 are not multivariate normal, then the solution to the mixed model equations still 
provides the maximum correlation between 𝑍𝑍 and 𝑢𝑢. 

This section describes the technical details specifically around the MRM approach. However, many more 
details describing the linear mixed model can be found in various statistical texts.3 

3.1.3.1 District and School Models 

The district and school MRMs do not contain random effects; consequently, in the linear mixed model, 
the 𝑍𝑍𝑍𝑍 term drops out. The 𝑋𝑋 matrix is an incidence matrix (a matrix containing only zeros and ones) 

 
3 See, for example, Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models (Hoboken, NJ: Wiley, 

2008). 
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with a column representing each interaction of school (in the school model), subject, grade, and year of 
data. The fixed-effects vector 𝑋𝑋 contains the mean score for each school, subject, grade, and year, with 
each element of 𝑋𝑋 corresponding to a column of 𝑋𝑋. Since MRMs are generally run with each school 
uniquely defined across districts, there is no need to include district in the model. 

Unlike the case of the usual linear model used for regression and analysis of variance, the elements of 𝜖𝜖 
are not independent. Their interdependence is captured by the variance-covariance matrix, also known 
as the 𝑅𝑅 matrix. Specifically, scores belonging to the same student are correlated. If the scores in 𝑦𝑦 are 
ordered so that scores belonging to the same student are adjacent to one another, then the 𝑅𝑅 matrix is 
block diagonal with a block, 𝑅𝑅𝑖𝑖, for each student. Each student’s 𝑅𝑅𝑖𝑖 is a subset of the “generic” 
covariance matrix 𝑅𝑅0 that contains a row and column for each subject and grade. Covariances among 
subjects and grades are assumed to be the same for all years (technically, all cohorts), but otherwise, 
the 𝑅𝑅0 matrix is unstructured. Each student’s 𝑅𝑅𝑖𝑖 contains only those rows and columns from 𝑅𝑅0 that 
match the subjects and grades for which the student has test scores. In this way, the MRM is able to use 
all available scores from each student. 

Algebraically, the district MRM is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (11) 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the test score for the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎ grade during the 
𝑙𝑙𝑡𝑡ℎ year in the 𝑑𝑑𝑡𝑡ℎ district. 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the estimated mean score for this particular district, subject, grade, 
and year. 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random deviation of the 𝑖𝑖𝑡𝑡ℎ student’s score from the district mean. 

The school MRM is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (12) 

This is the same as the district analysis with the replacement of subscript 𝑑𝑑 with subscript 𝑠𝑠 representing 
the 𝑠𝑠𝑡𝑡ℎ school. 

The MRM uses multiple years of data to estimate the covariances that can be found in the matrix 𝑅𝑅0. 
This estimation of covariances is done within each level of analyses and can result in slightly different 
values within each analysis. Each level of analysis will use the values found within that analysis. 

Solving the mixed model equations for the district or school MRM produces a vector 𝑏𝑏 that contains the 
estimated mean score for each school (in the school model), subject, grade, and year. To obtain a value-
added measure of average student growth, a series of computations can be done using the students 
from a school in a particular year and all of their prior year schools. Because students might change 
schools from one year to the next (in particular when transitioning from elementary to middle school, 
for example), the estimated mean score for the prior year/grade uses a weighted average of schools 
that fed students into the school, grade, subject, and year in question. Prior year schools are not used if 
they are feeding students in very small amounts (fewer than five) since those students likely do not 
represent the overall achievement of the school that they are coming from. For certain schools with very 
large rates of mobility, the estimated mean for the prior year/grade includes only students who tested 
in the current year. Mobility is taken into account within the model so that growth of students is 
computed using all students in each school, including those who might have moved buildings from one 
year to the next.  
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The computation for obtaining a growth measure can be thought of as a linear combination of fixed 
effects from the model. The best linear unbiased estimate for this linear combination is given by 
equation (5). The growth measures are reported along with standard errors, and these can be obtained 
by taking the square root of equation (6). 

Furthermore, in addition to reporting the estimated mean scores and mean gains produced by these 
models, the value-added reporting includes (1) cumulative gains across grades (for each subject and 
year), and (2) up to 3-year average gains (for each subject and grade). In general, these are all different 
forms of linear combinations of the fixed effects and their estimates, and standard errors are computed 
in the same manner described above. 

3.1.3.2 Teacher Model 

As a protection to teachers, the teacher estimates use a more conservative statistical process to lessen 
the likelihood of misclassifying teachers. Each teacher effect is assumed to be the state average in a 
specific year, subject, and grade until the weight of evidence pulls the teacher effect either above or 
below that state average. Furthermore, the teacher model is a “layered” model, which means that:  

• The current and previous teacher effects are incorporated.  

• Each teacher estimate takes into account all the students’ testing data over the years. 

• The percentage of instructional responsibility (instructional time) the teacher has for each 
student is used.  

Each element of the statistical computation for teacher value-added modeling provides a layer of 
protection against misclassifying each teacher estimate. 

For reasons described when introducing random effects, the MRM treats teachers as random effects via 
the 𝑍𝑍 matrix in the linear mixed model. The 𝑋𝑋 matrix contains a column for each subject/grade/year, 
and the 𝑏𝑏 vector contains an estimated mean score for each subject/grade/year. The 𝑍𝑍 matrix contains a 
column for each subject/grade/year/teacher, and the 𝑢𝑢 vector contains an estimated teacher effect for 
each subject/grade/year/teacher. The 𝑅𝑅 matrix is as described above for the district or school model. 
The 𝐺𝐺 matrix contains teacher variance components, with a separate unique variance component for 
each subject/grade/year. To allow for the possibility that a teacher might be very effective in one 
subject and very ineffective in another, the 𝐺𝐺 matrix is constrained to be a diagonal matrix. 
Consequently, the 𝐺𝐺 matrix is a block diagonal matrix with a block for each subject/grade/year. Each 
block has the form 𝜎𝜎2𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 where 𝜎𝜎2𝑖𝑖𝑖𝑖𝑖𝑖 is the teacher variance component for t the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎ 
grade in the 𝑙𝑙𝑡𝑡ℎ year, and 𝐼𝐼 is an identity matrix. 

Algebraically, the teacher model is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 + ��  
 

𝑖𝑖∗≤𝑖𝑖

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡  × 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗

𝑡𝑡=1

�+ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (13) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the test score for the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎgrade in the 𝑙𝑙𝑡𝑡ℎ year. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡 is the 
teacher effect of the 𝑡𝑡𝑡𝑡ℎ teacher on the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in grade 𝑘𝑘∗ in year 𝑙𝑙∗. The 
complexity of the parenthetical term containing the teacher effects is due to two factors. First, in any 
given subject/grade/year, a student might have more than one teacher. The inner (rightmost) 
summation is over all the teachers of the 𝑖𝑖𝑡𝑡ℎ student in a particular subject/grade/year. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡 is the 
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effect of those teachers. 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡 is the fraction of the 𝑖𝑖𝑡𝑡ℎ student’s instructional time claimed by the 𝑡𝑡𝑡𝑡ℎ 
teacher. Second, as mentioned above, this model allows teacher effects to accumulate over time. That 
is, how well a student does in the current subject/grade/year depends not only on the current teacher 
but also on the accumulated knowledge and skills acquired under previous teachers. The outer 
(leftmost) summation accumulates teacher effects not only for the current (subscripts 𝑘𝑘 and 𝑙𝑙) but also 
over previous grades and years (subscripts 𝑘𝑘∗ and 𝑙𝑙∗) in the same subject. Because of this accumulation 
of teacher effects, this type of model is often called the “layered” model. 

In contrast to the model for many district and school estimates, the value-added estimates for teachers 
are not calculated by taking differences between estimated mean scores to obtain mean gains. Rather, 
this teacher model produces teacher “effects” (in the 𝑢𝑢 vector of the linear mixed model). It also 
produces, in the fixed-effects vector 𝑏𝑏, state-level mean scores (for each year, subject and grade). 
Because of the way the 𝑋𝑋 and 𝑍𝑍 matrices are encoded, in particular because of the “layering” in 𝑍𝑍, 
teacher gains can be estimated by adding the teacher effect to the state mean gain. That is, the 
interpretation of a teacher effect in this teacher model is expressed as a deviation from the average gain 
for the state in a given year, subject, and grade. 

Table 2 illustrates how the 𝑍𝑍 matrix is encoded for three students who have three different scenarios of 
teachers during grades three, four, and five in two subjects, math (M) and reading (R).  

Tommy’s teachers represent the conventional scenario: Tommy is taught by a single teacher in both 
subjects each year (teachers Abbot, Card, and East in grades 3, 4, and 5, respectively). Notice that in 
Tommy’s 𝑍𝑍 matrix rows for grade 4, there are ones (representing the presence of a teacher effect) not 
only for fourth-grade teacher Card but also for third-grade teacher Abbot. This is how the “layering” is 
encoded. Similarly, in the grade 5 rows, there are ones for grade 5 teacher East, grade 4 teacher Card, 
and grade 3 teacher Abbot. 

Susan is taught by two different teachers in grade 3, teacher Abbot for Math and, teacher Banks for 
Reading. In grade 4, Susan had teacher Card for reading. For some reason, in grade 4 no teacher claimed 
Susan for Math even though Susan had a grade 4 Math test score. This score can still be included in the 
analysis by entering zeros into the Susan’s 𝑍𝑍 matrix rows for grade 4 Math. In grade 5, on the other 
hand, Susan had no test score in Reading. This row is completely omitted from the 𝑍𝑍 matrix. There will 
always be a 𝑍𝑍 matrix row corresponding to each test score in the 𝑦𝑦 vector. Since Susan has no entry in 𝑦𝑦 
for grade 5 Reading, there can be no corresponding row in 𝑍𝑍. 

Eric’s scenario illustrates team teaching. In grade 3 Reading, Eric received an equal amount of 
instruction from both teachers Abbot and Banks. The entries in the 𝑍𝑍 matrix indicate each teacher’s 
contribution, 0.5 for each teacher. In grade 5 Math, however, while Eric was taught by both teachers 
East and Farr, they did not make an equal contribution. Teacher East claimed 80% responsibility and 
teacher Farr claimed 20%. 

Teacher effect estimates are obtained by shrinkage estimation, technically known as best linear 
unbiased prediction or as empirical Bayesian estimation. This is a characteristic of random effects from a 
mixed model and means that a priori a teacher is considered to be “average” (with a teacher effect of 
zero) until there is sufficient student data to indicate otherwise. Zero represents the statewide average 
teacher effect in this case. This method of estimation protects against false positives (teachers 
incorrectly evaluated as effective) and false negatives (teachers incorrectly evaluated as ineffective), 
particularly in the case of teachers with few students. 

From the computational perspective, the teacher gain can be defined as a linear combination of both 
fixed effects and random effects and is estimated by the model using equation (9). The variance and 
standard error can be found using equation (10).  
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The teacher model provides estimated mean gains for each subject and grade. These quantities can be 
described by linear combinations of the fixed and random effects and are found using the equations 
mentioned above. 
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Table 2: Encoding the Z matrix 

 

 
      Teachers 

      Third Grade   Fourth Grade   Fifth Grade 

      Abbot Banks   Card Dupont   East Farr 

Student Grade Subjects M R M R   M R M R   M R M R 

Tommy 3 M 1 0 0 0   0 0 0 0   0 0 0 0 
    R 0 1 0 0   0 0 0 0   0 0 0 0 
  4 M 1 0 0 0  1 0 0 0  0 0 0 0 
    R 0 1 0 0   0 1 0 0   0 0 0 0 
  5 M 1 0 0 0  1 0 0 0  1 0 0 0 

    R 0 1 0 0   0 1 0 0   0 1 0 0 
Susan 3 M 1 0 0 0   0 0 0 0   0 0 0 0 

    R 0 0 0 1   0 0 0 0   0 0 0 0 
  4 M 1 0 0 0  0 0 0 0  0 0 0 0 
    R 0 0 0 1   0 1 0 0   0 0 0 0 
  5 M 1 0 0 0  0 0 0 0  0 0 1 0 

Eric 3 M 1 0 0 0   0 0 0 0   0 0 0 0 
   R 0 0.5 0 0.5  0 0 0 0  0 0 0 0 
  4 M 1 0 0 0   0 0 1 0   0 0 0 0 
   R 0 0.5 0 0.5  0 0 0 1  0 0 0 0 

  5 M 1 0 0 0   0 0 1 0   0.8 0 0.2 0 
    R 0 0.5 0 0.5   0 0 0 1   0 1 0 0 
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3.1.4 Where the MRM is Used in North Carolina 

The MRM is used with the EOG test in Math and in Reading for grades 3–8 to provide value-added 
measures for districts, schools, and teachers in grades 4–8 in Math and grades 3-8 in Reading. The MRM 
is also used with the K-2 assessment in Reading for K–2 to provide value-added measures for districts, 
schools, and teachers in those grades. 

The MRM methodology provides estimated measures of growth for up to three years in each 
subject/grade/year for district, school, and teacher analyses provided that the minimum student 
requirements are met. (Details are in Section 3.1.6.) For each subject, measures are also given across 
grades, across years (up to three-year averages), and combined across grades and years.  

For teachers, value-added measures for each EOG or K-2 subject/grade/year are computed (and 
displayed on the EVAAS web application available at https://ncdpi.sas.com/).  

More information about teacher composite measures can be found in Section 6. 

3.1.5 Students Included in the Analysis 

All students’ scores are included in these analyses if the scores can be used and do not meet any criteria 
for exclusion outlined in Section 8. In other words, a complete history of every student’s Math and 
Reading results for the student’s cohort are incorporated into the models.  

There are some exclusion rules based on policy decisions by NCDPI. For the MRM, student scores are 
excluded from the analyses if the student is flagged as a First Year EL student, and students must meet 
partial enrollment membership to be included in the analysis.  

A student score could be excluded if it is considered an “outlier” in context with all the other scores in a 
reference group of scores from an individual student. This process determines whether the score is 
"significantly different" from the other scores as indicated by a statistical analysis that compares each 
score to the other scores. There are different business rules for the low outlier scores and the high 
outlier scores. The outlier identification approach is more conservative when removing a very high 
achieving score; a lower score would be considered an outlier before a higher score would be 
considered an outlier. More details are provided in Section 8.  

3.1.5.1 District and School Measures  

3.1.5.1.1 Overall Measures of Student Growth for Districts and Schools 
The analyses for schools and districts include all applicable student scores from EOG math and reading 
tests from the cohort of students testing in the most recent three years or all applicable student scores 
from K-2 for early grade reporting.  

3.1.5.1.2 Student Group Measures of Student Growth for Districts and Schools 

Student group value-added measures are included in North Carolina’s federal accountability system. 
This includes the following student groups: 

• American Indian/Alaskan Native 

• Asian/Pacific Islander 

• Black (not Hispanic) 

• Hispanic 

https://tvaas.sas.com/
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• Two or More Races 

• White (not Hispanic) 

• Economically Disadvantaged Students (EDS) 

• English Learners (EL) 

• Students with Disabilities (SWD) 

• Academically or Intellectually Gifted (AIG) 

Students are identified as members of a group based on a flag in the student record. Growth measures 
are calculated for each subset of students for each district and school that meet the minimum 
requirements of student data. 

In each student group value-added computation, the expectation of growth is defined the same as in the 
overall students’ analysis. In other words, the expectation of growth is based on all students. 
Furthermore, the estimated covariance parameters are used from the overall students’ analysis when 
calculating the value-added measures. These measures are provided using the EOG subjects with a 
composite across Math in grades 4–8 and Reading in grades 4–8. 

3.1.5.2 Teacher Measures 
The Teacher Value-Added reports use all available test scores for each individual student linked to a 
teacher through the roster verification process unless a student or a student’s test score meets certain 
criteria for exclusion. 

3.1.6 Minimum Number of Students for Reporting 

3.1.6.1 District and School Models  

To ensure that estimates are reliable, the minimum number of students required to report an estimated 
mean NCE score for a school or district in a specific subject/grade/year is six. 

To report an estimated NCE gain for a school or district in a specific subject/grade/year, there are 
additional requirements: 

• There must be at least six students who are associated with the school or district in that 
subject/grade/year.  

• There is at least one student at the school or district who has a “simple gain,” which is based on 
a valid test score in the current year/grade as well as the prior year/grade in the same subject. 

• Of those students who are associated with the school or district in the current year/grade, there 
must be at least five students that have come from any single school for that prior school to be 
used in the gain calculation. 

3.1.6.2 Teacher Model 
The teacher value-added model includes teachers who are linked to at least six students with a valid test 
score in the same subject and grade. To clarify, this means that the teachers are included in the analysis, 
even if they do not receive a report due to the other requirements. This requirement does not consider 
the percentage of instructional time the teacher spends with each student in a specific subject/grade. 
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However, to receive a teacher value-added report for a particular year, subject, and grade, there are two 
additional requirements. First, a teacher must have at least six Full Time Equivalent (FTE) students in a 
specific subject/grade/year. The teacher’s number of FTE students is based on the number of students 
linked to that teacher and the percentage of instructional time the teacher has for each student. For 
example, if a teacher taught 10 students for 50% of their instructional time, then the teacher’s FTE 
number of students would be five, and the teacher would not receive a Teacher Value-Added report. If 
another teacher taught 12 students for 50% of their instructional time, then that teacher would have six 
FTE students and would receive a Teacher Value-Added report. The instructional time attribution is 
obtained from the student-teacher linkage data. This information is in the files sent to EVAAS described 
in Section 2. 

As the second requirement, the teacher must be linked to at least five students with prior test score 
data in the same subject, and the test data might come from any prior grade as long as they are part of 
the student’s regular cohort. (If a student repeats a grade, then the prior test data would not apply as 
the student has started a new cohort.) One of these five students must have a “simple gain,” meaning 
the same subject prior test score must come from the immediate prior year and prior grade. Students 
are linked to a teacher based on the subject area taught and the assessment taken. 

3.1.7 Hurricane Florence Adjustment 

At the request of NCDPI, SAS conducted an analysis to assess whether students’ growth measures were 
related to their districts’ loss of instructional days due to Hurricane Florence in the 2018-19 school year. 
This analysis indicated a need to adjust the growth model for EOG Reading in grade 3 to ensure validity 
and comparability of results statewide. As a result, the growth model for EOG Reading in grade 3 makes 
an adjustment to students’ Beginning-of-Year (BOY) test score based on the number of days missed and 
waived due to the hurricane as well as students’ performance on other assessments, such as their prior 
test scores in grade 2 and their End-of-Year (EOY) test score in grade 3. In technical terms, the growth 
model uses linear regression to establish a relationship among grade 2 test scores, grade 3 test scores, 
and the number of days missed and waived. The BOY test scores are adjusted prior to use in the growth 
model.  

3.2 Univariate Response Model (URM) 
Tests that are not necessarily administered to students in consecutive years, like the EOC and CTE tests, 
require a different modeling approach from the MRM, and this modeling approach is called the 
univariate response model (URM) or predictive model. This model is also used when previous test 
performance is used to predict another test’s performance, such as the NCFE or ACT. The statistical 
model can also be classified as a linear mixed model and can be further described as an analysis of 
covariance (ANCOVA) model. The URM is a regression-based model, which measures the difference 
between students’ predicted scores for a particular subject/year with their observed scores. The growth 
expectation is met when students with a district/school/teacher made the same amount of growth as 
students in the average district/school/teacher with the state for that same year/subject/grade. If not all 
teachers were administering a particular test in the state, then it would compare to the average of those 
teachers with students taking that assessment, such as the case with many CTE assessments and some 
NCFE assessments.  

The key advantages of the URM approach can be summarized as follows: 

• The model does not require students to have all predictors or the same set of predictors as long 
as a student has at least three prior test scores in any subject/grade. 
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• The model minimizes the influence of measurement error by using many prior tests for an 
individual student. Analyzing all subjects simultaneously increases the precision of the 
estimates. 

• The model uses scores from multiple tests, including those on different scales. 

• The model accommodates teaching scenarios where more than one teacher has responsibility 
for a student’s learning in a specific subject/grade/year. 

In North Carolina, URM value-added reporting is available for NCFE, CTE, ACT, SAT, PSAT, and all EOC 
assessments for districts and schools. Teacher measures are also available for EOC, NCFE, and CTE 
assessments. 

3.2.1 URM at the Conceptual Level 

The URM is run for each individual year, subject, and grade (if relevant). Consider all students who took 
Biology in a given year. Those students are connected to their prior testing history (across grades, 
subjects, and years), and the relationship between the observed Biology scores with all prior test scores 
is examined. It is important to note that some prior test scores are going to have a greater relationship 
to the score in question than others. For example, it might be that prior science tests will have a greater 
relationship with Biology than prior reading scores. However, the other scores still have a statistical 
relationship. 

Once that relationship has been defined, a predicted score can be calculated for each individual student 
based on his or her own prior testing history. With each predicted score based on a student’s prior 
testing history, this information can be aggregated to districts, schools, or teachers. The predicted score 
can be thought of as the entering achievement of a student.  

The measure of growth is a function of the difference between the observed (most recent) scaled scores 
and predicted scaled scores of students associated with each district, school, or teacher. If students at a 
school typically outperform their individual growth expectation, then that school will likely have a larger 
value-added measure. Zero is defined as the average district, school, or teacher in terms of the average 
growth, so that if every student obtained their predicted score, a district, school, or teacher would likely 
receive a value-added measure close to zero. A negative or zero value does not mean “zero growth” 
since this is all relative to what was observed in the state (or pool) that year. 

3.2.2 Technical Description of the District, School, and Teacher Models 

The URM has similar models for district and school and a slightly different model for teachers that 
allows multiple teachers to share instructional responsibility. The approach is described briefly below, 
with more details following. 

• The score to be predicted serves as the response variable (𝑦𝑦, the dependent variable). 

• The covariates (𝑥𝑥s, predictor variables, explanatory variables, independent variables) are scores 
on tests the student has already taken. 

• The categorical variable (class variable, factor) are the teacher(s) from whom the student 
received instruction in the subject/grade/year of the response variable (𝑦𝑦).  

Algebraically, the model can be represented as follows for the 𝑖𝑖𝑡𝑡ℎ student when there is no team 
teaching. 
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𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦 + 𝛼𝛼𝑖𝑖 + 𝑋𝑋1(𝑥𝑥𝑖𝑖1 − 𝜇𝜇1) + 𝑋𝑋2(𝑥𝑥𝑖𝑖2− 𝜇𝜇2) +⋯+ 𝜖𝜖𝑖𝑖 (14) 

In the case of team teaching, the single 𝛼𝛼𝑖𝑖  is replaced by multiple 𝛼𝛼s, each multiplied by an appropriate 
weight, similar to the way this is handled in the teacher MRM in equation (13). The 𝜇𝜇 terms are means 
for the response and the predictor variables. 𝛼𝛼𝑖𝑖  is the teacher effect for the 𝑗𝑗𝑡𝑡ℎ teacher, the teacher 
who claimed responsibility for the 𝑖𝑖𝑡𝑡ℎ student. The 𝑋𝑋 terms are regression coefficients. Predictions to 
the response variable are made by using this equation with estimates for the unknown parameters (𝜇𝜇s, 
𝑋𝑋s, sometimes 𝛼𝛼𝑖𝑖 ). The parameter estimates (denoted with “hats,” e.g., �̂�𝜇, �̂�𝑋) are obtained using all 
students that have an observed value for the specific response and have three predictor scores. The 
resulting prediction equation for the 𝑖𝑖𝑡𝑡ℎ student is as follows: 

𝑦𝑦�𝑖𝑖 = �̂�𝜇𝑦𝑦 + �̂�𝑋1(𝑥𝑥𝑖𝑖1 −  �̂�𝜇1) + �̂�𝑋2(𝑥𝑥𝑖𝑖2 −  �̂�𝜇2) +⋯ (15) 

Two difficulties must be addressed in order to implement the prediction model. First, not all students 
will have the same set of predictor variables due to missing test scores. Second, the estimated 
parameters are pooled-within-teacher estimates. The strategy for dealing with missing predictors is to 
estimate the joint covariance matrix (call it 𝐶𝐶) of the response and the predictors. Let 𝐶𝐶 be partitioned 
into response (𝑦𝑦) and predictor (𝑥𝑥) partitions, that is: 

𝐶𝐶 =  �
𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦
𝑐𝑐𝑦𝑦𝑦𝑦 𝐶𝐶𝑦𝑦𝑦𝑦

� (16) 

𝐶𝐶 in equation (16) is not the same as 𝐶𝐶 in equation (4). This matrix is estimated using an Expectation 
Maximization (EM) algorithm for estimating covariance matrices in the presence of missing data, such as 
the one provided in the SAS/STAT® MI Procedure, but modified to accommodate the nesting of students 
within teachers. Only students who had a test score for the response variable in the most recent year 
and who had at least three predictor variables are included in the estimation. Given such a matrix, the 
vector of estimated regression coefficients for the projection equation (15) can be obtained as: 

�̂�𝑋 =  𝐶𝐶𝑦𝑦𝑦𝑦−1𝑐𝑐𝑦𝑦𝑦𝑦 (17) 

This allows one to use whichever predictors a particular student has to get that student’s projected 𝑦𝑦-
value (𝑦𝑦�𝑖𝑖). Specifically, the 𝐶𝐶𝑦𝑦𝑦𝑦 matrix used to obtain the regression coefficients for a particular student 
is that subset of the overall 𝐶𝐶 matrix that corresponds to the set of predictors for which this student has 
scores. 

The prediction equation also requires estimated mean scores for the response and for each predictor 
(the �̂�𝜇 terms in the prediction equation). These are not simply the grand mean scores. It can be shown 
that in an ANCOVA, if the parameters are defined such that the estimated teacher effects should sum to 
zero (that is, the teacher effect for the “average teacher” is zero), then the appropriate means are the 
means of the teacher means. Teacher means are obtained from the EM algorithm, mentioned above, 
which takes into account missing data. The overall means (�̂�𝜇 terms) are then obtained as the simple 
average of the teacher means. 

Once the parameter estimates for the prediction equation have been obtained, predictions can be made 
for any student with any set of predictor values as long as that student has a minimum of three prior 
test scores.  
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𝑦𝑦�𝑖𝑖 = �̂�𝜇𝑦𝑦 + �̂�𝑋1(𝑥𝑥𝑖𝑖1 −  �̂�𝜇1) + �̂�𝑋2(𝑥𝑥𝑖𝑖2 −  �̂�𝜇2) +⋯ (18) 

The 𝑦𝑦�𝑖𝑖 term is nothing more than a composite of all the student’s past scores. It is a one-number 
summary of the student’s level of achievement prior to the current year. The different prior test scores 
making up this composite are given different weights (by the regression coefficients, the �̂�𝑋s) in order to 
maximize its correlation with the response variable. Thus, a different composite would be used when 
the response variable is math than when it is reading for example. Note that the 𝛼𝛼�𝑖𝑖  term is not included 
in the equation. Again, this is because 𝑦𝑦�𝑖𝑖  represents prior achievement before the effect of the current 
district, school, or teacher. To avoid bias due to measurement error in the predictors, composites are 
obtained only for students who have at least three prior test scores. 

The second step in the URM is to estimate the teacher effects (𝛼𝛼𝑖𝑖 ) using the following ANCOVA model: 

𝑦𝑦𝑖𝑖 =  𝛾𝛾0 + 𝛾𝛾1𝑦𝑦�𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝜖𝜖𝑖𝑖  (19) 

In the URM model, the effects (𝛼𝛼𝑖𝑖 ) are considered to be random effects. Consequently, the 𝛼𝛼�𝑖𝑖s are 
obtained by shrinkage estimation (empirical Bayes). The regression coefficients for the ANCOVA model 
are given by the 𝛾𝛾s.  

3.2.3 Students Included in the Analysis 

3.2.3.1.1 Overall Measures of Student Growth for Districts, Schools, and Teachers 

In order for a student’s score to be used in the district or school analysis for a particular 
subject/grade/year, the student must have at least three valid predictor scores that can be used in the 
analysis, all of which cannot be deemed outliers. These scores can be from any year, subject, and grade 
used in the analysis. It will include subjects other than the subject being predicted. The required three 
predictor scores are needed to sufficiently dampen the error of measurement in the tests to provide a 
reliable measure. If a student does not meet the three score minimum, then the student is excluded 
from the analyses. It is important to note not all students have to have the same three prior test scores. 
They only have to have some subset of three that were used in the analysis.  

There are some exclusion rules based on policy decisions by NCDPI. For the URM, student scores are 
excluded from the analyses if the student is flagged as a First Year EL student or if the student does not 
meet partial enrollment membership for EOC, NCFE and CTE assessments. For the Math 3 value-added 
reporting, there are two sets of school reports: one set that excludes students as described for EOCs and 
another set that further excludes students based on a School Accountability Growth flag for EOC Math 3. 
This flag indicates whether the student was previously used in School Accountability Growth for Math 1 
and should therefore be excluded from School Accountability Growth for Math 3. Note that Teacher 
reports based on Math 3 do not exclude students based on the School Accountability Growth flag. There 
are no membership rules used to include or exclude students in the SAT, PSAT, and ACT analyses. 

A student score could be excluded if it is considered an “outlier” in context with all of the other scores in 
a reference group of scores from an individual student. Is the score "significantly different" from the 
other scores as indicated by a statistical analysis that compares each score to the other scores? There 
are different business rules for the low outlier scores and the high outlier scores. This approach is more 
conservative when removing a very high achieving score, and a lower score would be considered an 
outlier before a higher score would be considered an outlier. More details are provided in Section 8.  
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3.2.3.1.2 Student Group Measures of Student Growth for Districts and Schools 

Student group value-added measures are included in North Carolina’s federal accountability system. 
This includes the following student groups: 

• American Indian/Alaskan Native 

• Asian/Pacific Islander 

• Black (not Hispanic) 

• Hispanic 

• Two or More Races 

• White (not Hispanic) 

• Economically Disadvantaged Students (EDS) 

• English Learners (EL) 

• Students with Disabilities (SWD) 

• Academically or Intellectually Gifted (AIG) 

Students are identified as members of a group based on a flag in the student record. Growth measures 
are calculated for each subset of students for each district and school that meet the minimum 
requirements of student data. 

In each student group value-added computation, the expectation of growth is defined the same as in the 
overall students’ analysis. In other words, the expectation of growth is based on all students. 
Furthermore, the estimated covariance parameters are used from the overall students’ analysis when 
calculating the value-added measures. These measures are provided using the EOC subjects with a 
composite across Math 1, Math 3, and English II. The Math 3 student group reporting includes only 
students who meet the accountability business rules described in the second set of reports described in 
Section 3.2.3.1.1. 

3.2.4 Minimum Number of Students for Reporting 

To receive an overall measure of student growth, a district or school must have at least 10 students in 
that year, subject, and grade that have the required three prior test scores needed to obtain a predicted 
score in that year, subject, and grade and have met all other requirements to be included. Student 
group reporting also requires 10 students to be included in the EVAAS web reporting. 

For teacher reporting, there must be 10 students meeting criteria for inclusion in that year, subject, and 
grade that have the required three prior test scores needed to obtain a predicted score in that year, 
subject, and grade. Again, in order to receive a Teacher Value-Added report for a particular year, 
subject, and grade, a teacher must have at least six Full Time Equivalent (FTE) students in a specific 
subject/grade/year as described in Section 3.1.6.2.  
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4 Growth Expectation 
The simple definition of growth was described in the introduction as follows: 

• Growth = current achievement/current results compared to all prior achievement/prior results 
with achievement being measured by a quality assessment, such as the EOG tests 

Typically, the “expected” growth is set at zero, such that positive gains or effects are evidence that 
students made more than the expected growth, and negative gains or effects are evidence students 
made less than the expected growth. 

However, the precise definition of “expected growth” varies by model, and this section provides more 
detail. 

4.1 Intra-Year Growth Expectation 

4.1.1 Description 

• The actual definitions in each model are slightly different, but the concept can be considered as 
the average amount of growth seen across the state in a statewide implementation. 

• Using the URM model, the definition of the expectation is that students with a district, school, 
or teacher made the same amount of growth as students with the average district, school, or 
teacher in the state for that same year/subject/grade. If not all students are taking an 
assessment in the state, then it might be a subset. 

• Using the MRM model, the definition of this type of expectation of growth is that students 
maintained the same relative position with respect to the statewide student achievement from 
one year to the next in the same subject area. For example, if students’ achievement was at the 
50th NCE in 2018 grade 4 Math, based on the 2018 grade 4 Math statewide distribution of 
student achievement, and their achievement is at the 50th NCE in 2019 grade 5 Math, based on 
the 2019 grade 5 Math statewide distribution of student achievement, then their estimated gain 
is 0.0 NCEs. 

• With this approach, the value-added measures tend to be centered on the growth expectation 
every year, with approximately half of the district/school/teacher estimates above zero and 
approximately half of the district/school/teacher estimates below zero. However, it should be 
noted that there is not a set distribution of the value-added measures. Being centered on the 
growth expectation does not mean half of the measures would be in the positive levels and half 
would be in the negative levels since many value-added measures are indistinguishable from the 
expectation when considering the statistical certainly around that measure. More details can be 
found in Section 5. 

4.1.2 Illustrated Example 

Figure 3 below provides a simplified example of how growth is calculated with an intra-year approach 
when the state achievement increases. The figure has four graphs, each of which plot the NCE 
distribution of scale scores for a given year and grade. The scale scores are used to illustrate an example 
in the graphics below and do not represent actual scale scores in North Carolina. In this example, the 
figure shows how the gain is calculated for a group of grade 4 students in Year 1 as they become grade 5 
students in Year 2. In Year 1, our grade 4 students score, on average, 420 scale score points on the test, 
which corresponds to the 50th NCE (similar to the 50th percentile). In Year 2, the students score, on 
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average, 434 scale score points on the test, which corresponds to a 50th NCE based on the grade 5 
distribution of scores in Year 2. The grade 5 distribution of scale scores in Year 2 was higher than the 
grade 5 distribution of scale scores in Year 1, which is why the lower right-hand graph is shifted slightly 
to the right. The blue line shows what is required for students to make expected growth, which would 
be to maintain their position at the 50th NCE in grade 4 in Year 1 as they become grade 5 students in 
Year 2. The growth measure for these students is Year 2 NCE – Year 1 NCE, which would be 50 – 50 = 0. 
Similarly, if a group of students started at the 35th NCE, the expectation is that they would maintain that 
35th NCE.  

The actual gain calculations are much more robust than what is presented here. As described in the 
previous section, the models can address students with missing data, team teaching, and all available 
testing history.  

Figure 3: Intra-year approach example 

 

 

4.2 Defining the Expectation of Growth During an Assessment Change 
During the change of assessments, the scales from one year to the next will be completely different 
from one another. This does not present any particular changes with the URM methodology because all 
predictors in this approach are already on different scales from the response variable, so the transition 
is no different from a scaling perspective. Of course, there will be a need for the predictors to be 
adequately related to the response variable of the new assessment, but that typically is not an issue.  

With the intra-year growth expectation in the MRM, the scales from one year to the next can be 
completely different from one another. This method converts any scale to a relative position and can be 
used through an assessment change.  

Over the past 20 years, EVAAS reporting has accommodated several different changes in testing regimes 
and used several tests for the MRM without a break in reporting, such as the change in assessments in 
North Carolina in 2012. 
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5 Using Standard Errors to Create Levels of Certainty and 
Define Effectiveness 

In all value-added reporting, EVAAS includes the value-added estimate (growth measure) and its 
associated standard error. This section provides more information about standard error and how it is 
used to define effectiveness. 

5.1 Using Standard Errors Derived from the Models 
As described in the modeling approaches section, each model provides an estimate of growth for a 
district, school, or teacher in a particular subject/grade/year as well as that estimate’s standard error. 
The standard error is a measure of the quantity and quality of student data included in the estimate, 
such as the number of students and the occurrence of missing data for those students. Because 
measurement error is inherent in any growth or value-added model, the standard error is a critical part 
of the reporting. Taken together, the estimate and standard error provide educators and policymakers 
with critical information about the certainty that students in a district, school, or classroom are making 
decidedly more or less than the expected growth. Taking the standard error into account is particularly 
important for reducing the risk of misclassification (for example, identifying a teacher as ineffective 
when he or she is truly effective) for high-stakes usage of value-added reporting. 

Furthermore, because the MRM and URM models use robust statistical approaches as well as maximize 
the use of students’ testing history, they can provide value-added estimates for relatively small numbers 
of students. This allows more teachers, schools, and districts to receive their own value-added 
estimates, which is particularly useful to rural communities or small schools. As described in Section 3, 
there are minimum requirements of students per tested subject/grade/year depending on the model, 
which are relatively small.  

The standard error also takes into account that, even among teachers with the same number of 
students, teachers might have students with very different amounts of prior testing history. Due to this 
variation, the standard errors in a given subject/grade/year could vary significantly among teachers, 
depending on the available data that is associated with their students, and it is another important 
protection for districts, schools, and teachers to incorporate standard errors into value-added reporting.  

5.2 Defining Effectiveness in Terms of Standard Errors 
Each value-added estimate has an associated standard error, which is a measure of uncertainty that 
depends on the quantity and quality of student data associated with that value-added estimate. 

The standard error can help indicate whether a value-added estimate is significantly different from the 
growth standard. In the reporting, there is a need to display the values used to determine these 
categories. This value is typically referred to as the growth index and is simply the value-added measure 
divided by its standard error. Since the expectation of growth is zero, this measures the certainty about 
the difference of a growth measure to zero.  

The chart below provides the color-coding, definitions, and interpretation for the Value-Added reports 
for teachers, which are similar to those provided for districts and schools. 
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Value-Added 
Color and 
Teacher 
Measure 
Designation 

Growth Measure 
Compared to the Growth 
Standard 

Index* Interpretation 

Exceeds 
Expected 
Growth 

At least 2 standard errors 
above 

2.00 or greater Significant evidence that 
students made more 
progress than the Growth 
Standard. 

Meets Expected 
Growth 

Between 2 standard 
errors above and 2 
standard errors below 

Between -2.00 
and 2.00 

Evidence that students 
made progress similar to 
the Growth Standard. 

Does Not Meet 
Expected 
Growth 

More than 2 standard 
errors below 

Less than -2.00 Significant evidence that 
students made less 
progress than the Growth 
Standard. 

NOTE: When an index falls exactly on the boundary between two colors, the higher growth color is assigned. 
 
*These rules for effectiveness levels and growth colors apply to all index values in the district, school, and 
teacher reports. 

The distribution of these categories can vary by year/subject/grade. There are many reasons this is 
possible, but overall, these categories are based on the amount of evidence that shows whether 
students make more or less than the expected growth.  

5.3 Rounding and Truncating Rules 
As described in the previous section, the effectiveness categories are based on the value of the growth 
index. In determining the growth index, rounding and truncating rules are applied only in the final step 
of the calculation. Thus, the calculation of the growth index uses unrounded values for the value-added 
measures and standard errors. After the growth index has been created but before the categories are 
determined, the index values are rounded or truncated by taking the maximum value of the rounded or 
truncated index value out to two decimal places. This business rule yields the highest category of 
effectiveness given any type of rounding or truncating situation. For example, if the index score was a 
1.995, then rounding would provide a higher category. If the score was a -2.005, then truncating would 
provide a higher category. In practical terms, this impacts only a small number of measures. 

When value-added measures are also combined to form composites, as described in the next section, 
the rounding or truncating occurs after the final index is calculated for that combined measure.  
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6 EVAAS Composite Calculations 

6.1 Introduction 
This section describes how the policy decisions by NCDPI are implemented in the calculation of 
composites for teachers and schools in the tested subjects and/or grades. 

The key policy decisions for teacher composites can be summarized as follows: 

• This composite is called the Student Growth Measure, and it includes all available growth 
measures associated with teachers who received value-added reports within the past three 
consecutive reporting years. 

• For each reporting year, a single-year composite is calculated by weighing each 
subject/grade/year (for EOG, K-2 and NCFE) and each subject/year (for EOC and CTE) according 
to the effective number of students’ scores included in the value-added measure. 

• The composite is then a simple average with equal weighting given to each single-year 
composite. 

The key policy decisions for school composites can be summarized as follows: 

• A composite is calculated across subjects and grades using one year of growth measures for 
schools.  

• There are two types of school composites. The first is the School Accountability Growth (SAG) 
composite that includes only EOC and EOG subjects and grades. Biology is not included in SAG. 
There is a second composite, Educator Effective Growth (EEG), which uses more subjects and 
grades associated with a school since it also includes K-2, NCFE, and CTEs. 

• Both the SAG and EEG composites weigh each subject/grade/year (for EOG, K-2 and NCFE) and 
each subject/year (for EOC and CTE) according to the number of scores included in the value-
added measures. 

A composite combines value-added measures from different tests, subjects, and grades. The following 
sections show how a Student Growth Measure composite is calculated for a sample teacher. Although 
we present a teacher example, the process for school composite calculations is the same. 

6.2 Teacher Composites 
The key steps for determining a teacher’s SGM composite index are as follows: 

1. Calculate MRM-based composite gain, standard error, and index across grades and subjects. 
2. Calculate URM-based composite index across subjects. 
3. Calculate composite index using both the MRM- and URM-based composite indices. 

If a teacher does not have value-added measures from both the MRM and URM, then the SGM 
composite index would be based on the model for which the teacher does have reporting. The following 
sections illustrate this process using value-added measures from a sample teacher, which are provided 
below. 
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Table 3: Sample teacher value-added information 

Year Subject Grade Value-Added 
Measure 

Standard Error Number of FTE 
Students 

2019 EOG 
Reading 

8 -0.30 1.20 65 

2019 EOG Math 8 3.80 1.50 70 

2019 Math 1 8 11.75 6.20 20 

6.2.1 Calculate MRM-Based Composite Gain Across Subjects 

All value-added measures from the MRM are in the same scale (Normal Curve Equivalents), so the 
composite gain across subjects is a simple average gain of all applicable gains, each weighted according 
to the proportion of students linked to that gain. For our sample teacher, the total number of FTE 
students affiliated with MRM value-added measures is 65 + 70, or 135. The EOG Reading grade 8 value-
added measure would be weighted at 65/135 and the EOG Math grade 8 value-added measure would 
be weighted at 70/135. 

More specifically, the sample teacher would have an MRM-based composite gain as follows: 

𝑀𝑀𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝐺𝐺𝑉𝑉𝑖𝑖𝐺𝐺 =  
65

135𝑅𝑅𝑅𝑅𝑉𝑉𝑑𝑑8 + 
70

135𝑀𝑀𝑉𝑉𝑡𝑡ℎ8 = �
65

135
�(−0. 30) + �

70
135

�(3.80) = 1.83 (20) 

6.2.2 Calculate MRM-Based Standard Error Across Subjects 

6.2.2.1 Technical Background on Standard Errors 

As a reminder, the use of the word “error” does not indicate a mistake. Rather, value-added models 
produce estimates. That is, the value-added gains in the above tables are estimates, based on student 
test score data, of the teacher’s true value-added effectiveness. In statistical terminology a “standard 
error” is a measure of the uncertainty in the estimate, providing a means to determine whether an 
estimate is decidedly above or below the growth expectation. Standard errors can, and should, also be 
provided for the composite gains that have been calculated, as shown above, from a teacher’s value-
added gain estimate. 

Statistical formulas are often more conveniently expressed as variances, and this is the square of the 
standard error. Standard errors of composites can be calculated using variations of the general formula 
shown below. To maintain the generality of the formula, the individual estimates in the formula (think of 
them as value-added-gains) are simply called 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍. If there were more than or fewer than three 
estimates, the formula would change accordingly. As EOG composites use proportional weighting 
according to the number of students linked to each value-added gain, each estimate is multiplied by a 
different weight - 𝑉𝑉, 𝑏𝑏, or 𝑐𝑐. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑉𝑉𝑋𝑋+ 𝑏𝑏𝑌𝑌+ 𝑐𝑐𝑍𝑍) = 𝑉𝑉2𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) + 𝑐𝑐2𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) 

+2𝑉𝑉𝑏𝑏 𝐶𝐶𝐶𝐶𝑍𝑍(𝑋𝑋,𝑌𝑌) + 2𝑉𝑉𝑐𝑐 𝐶𝐶𝐶𝐶𝑍𝑍(𝑋𝑋, 𝑍𝑍) + 2𝑏𝑏𝑐𝑐 𝐶𝐶𝐶𝐶𝑍𝑍(𝑌𝑌,𝑍𝑍) (21) 
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Covariance, denoted by 𝐶𝐶𝐶𝐶𝑍𝑍, is a measure of the relationship between two variables. It is a function of a 
more familiar measure of relationship, the correlation coefficient. Specifically, the term 𝐶𝐶𝐶𝐶𝑍𝑍(𝑋𝑋,𝑌𝑌) is 
calculated as follows: 

𝐶𝐶𝐶𝐶𝑍𝑍(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝑙𝑙𝑉𝑉𝑡𝑡𝑖𝑖𝐶𝐶𝐺𝐺(𝑋𝑋,𝑌𝑌)�𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)�𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) (22) 

The value of the correlation ranges from -1 to +1, and these values have the following meanings:  

• A value of zero indicates no relationship. 

• A positive value indicates a positive relationship, or 𝑌𝑌 tends to be larger when 𝑋𝑋 is larger.  

• A negative value indicates a negative relationship, or 𝑌𝑌 tends to be smaller when 𝑋𝑋 is larger. 

Two variables that are unrelated have a correlation, and covariance, of zero. Such variables are said to 
be statistically independent. If the 𝑋𝑋 and 𝑌𝑌 values have a positive relationship, then the covariance will 
also be positive. As a general rule, two value-added gain estimates are statistically independent if they 
are based on completely different sets of students. For our sample teacher’s MRM composite gain, the 
relationship will generally be positive, and this means that the MRM-based composite standard error is 
larger than it would be assuming independence. 

6.2.2.2 Illustration of MRM-Based Standard Error for a Sample Teacher 

For the sample teacher, it cannot be assumed that the gains in the composite are independent because 
it is likely that some of the same students are represented in different value-added gains, such as grade 
8 Math in 2019 and grade 8 Reading in 2019.  

However, to demonstrate the impact of the covariance terms on the standard error, it is useful to 
calculate the standard error using (inappropriately) the assumption of independence. Using the MRM-
based FtE weightings and standard errors reported in Table 3 and assuming total independence, the 
standard error would then be as follows: 

𝑀𝑀𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝑆𝑆𝐸𝐸 =   ��
65

135
�
2

(𝑆𝑆𝐸𝐸 𝑅𝑅𝑅𝑅𝑉𝑉𝑑𝑑8)2+ �
70

135
�
2

(𝑆𝑆𝐸𝐸 𝑀𝑀𝑉𝑉𝑡𝑡ℎ8)2

=   ��
65

135
�
2

(1.20)2+ �
70

135
�
2

(1.50)2 = 0.97 

 

(23) 

At the other extreme, if the correlation between each pair of value-added gains had its maximum value 
of +1, the standard error would be as follows using the MRM-based FtE weightings and standard errors 
from Table 3: 
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𝑀𝑀𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝑆𝑆𝐸𝐸

= ��
65

135
�
2

(𝑆𝑆𝐸𝐸 𝑅𝑅𝑅𝑅𝑉𝑉𝑑𝑑8)2 + �
70

135
�
2

(𝑆𝑆𝐸𝐸 𝑀𝑀𝑉𝑉𝑡𝑡ℎ8)2+ 2 �
65

135
��

70
135

�(𝑆𝑆𝐸𝐸 𝑅𝑅𝑅𝑅𝑉𝑉𝑑𝑑8)(𝑆𝑆𝐸𝐸 𝑀𝑀𝑉𝑉𝑡𝑡ℎ8) 

= ��
65

135
�
2

(1.20)2 + �
70

135
�
2

(1.50)2+ 2 �
65

135
��

70
135

�(1.20)(1.50) = 1.36 

(24) 

The actual standard error will fall somewhere between the two extreme values of 0.97 and 1.36 with the 
specific value depending on the values of the correlations between pairs of value-added gains. The 
magnitude of each correlation depends on the extent to which the same students are in both estimates 
for any two subject/grade/year estimates. For example, if the 2019 grade 8 Math and 2019 grade 8 
Reading classes had no students in common, then their correlation would be zero. If the 2019 grade 8 
Math and 2019 grade 8 Reading classes contained many of the same students, there would be a positive 
correlation. However, even if those two classes had exactly the same students, the correlation would 
likely be considerably less than +1. The actual correlations and covariances themselves are obtained as 
part of the EVAAS modeling process using equation (10) from Section 3.1.3. It would be impossible to 
obtain them outside of the modeling process. This process uses all of the information about which 
students are in which subject/grade/year for each teacher.  

Although this approach uses a more sophisticated technique, it more accurately captures the potential 
relationships among teacher estimates and student scores. This will lead to the appropriate standard 
error that is typically between these two extremes, which are 0.97 and 1.36 in this particular example. In 
general, the standard error of the composite gain will vary depending on the standard errors of the 
value-added gains and the correlations between pairs of value-added gains. The standard errors of the 
individual value-added gains will depend on the quantity and quality of the data that went into the gain, 
such as the number of students and the amount of missing data all of those students have, will 
contribute to the magnitude of the standard error. 

6.2.3 Calculate MRM-Based Composite Index Across Subjects 

The final step is to calculate the MRM-based composite index, which is the composite value-added gain 
divided by its standard error. The composite index for the sample teacher is 1.83 divided by a number 
between 0.97 and 1.36. The actual MRM-based standard error is determined using all of the information 
described above, which includes information beyond just our one sample teacher. For simplicity’s sake, 
let’s assume that the actual standard error in this example was 1.15, and the index for this teacher 
would be calculated as follows: 

𝑀𝑀𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝐼𝐼𝐺𝐺𝑑𝑑𝑅𝑅𝑥𝑥 =
𝑀𝑀𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝐺𝐺𝑉𝑉𝑖𝑖𝐺𝐺
𝑀𝑀𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝑆𝑆𝐸𝐸 =

1.83
1.15 = 1.59 (25) 

Although some of the values in the example were rounded for display purposes, the actual rounding or 
truncating occurs only after all of the measures have been combined as described in Section 5.3.  

6.2.4 Calculate URM-Based Index Across Subjects 

For our sample teacher, there is only one available URM value-added measure. This means that the 
reported value-added index for that subject will be the same that is calculated for the URM-based 
composite index.  
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𝑈𝑈𝑅𝑅𝑀𝑀 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝐼𝐼𝐺𝐺𝑑𝑑𝑅𝑅𝑥𝑥 =
𝑀𝑀𝑉𝑉𝑡𝑡ℎ 1 𝑉𝑉𝑉𝑉 𝑀𝑀𝑅𝑅𝑉𝑉𝑠𝑠𝑢𝑢𝑉𝑉𝑅𝑅

𝑀𝑀𝑉𝑉𝑡𝑡ℎ 1 𝑆𝑆𝐸𝐸 =
11.75
6.20 = 1.90 (26) 

However, should a teacher have more than one value-added measure based on the URM, then the 
composite index would be calculated by first calculating index values for each subject and then 
combining the weighting by the effective number of students. The standard error of this combined index 
must assume independence since the URM measures are done in separate models for each year and 
subject 

6.2.5 Calculate the Combined MRM and URM Composite Index Across Subjects 

The two composite indices from the MRM and URM are then weighted according to the number of 
students linked to each model to determine the combined composite index. Our sample teacher has 155 
students, of which 135 are linked to the MRM and 20 to the URM, so the combined composite index 
would be calculated as follows using these weightings, the MRM-based composite index across subjects, 
and the URM-based index across subjects: 

𝑈𝑈𝐺𝐺𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝑅𝑅𝑑𝑑 𝐶𝐶𝐶𝐶𝑚𝑚𝑏𝑏𝑖𝑖𝐺𝐺𝑅𝑅𝑑𝑑 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝐼𝐼𝐺𝐺𝑑𝑑𝑅𝑅𝑥𝑥 = �
135
155

�(1.59)+ �
20

155
� (1.90) = 1.62 (27) 

This combined index is not an actual index itself until it is adjusted to accommodate for the fact that it is 
based on multiple pieces of evidence together. An index by definition has a standard error of 1, but this 
unadjusted value (1.62) does not have a standard error of 1. The next step is to calculate the new 
standard error and divide the combined composite index found above by it. This new, adjusted 
composite index will be the final index with a standard error of 1. The standard error can be found given 
the standard formula above and the fact that each index has a standard error of 1. Independence is 
assumed since these are done outside of the models. In this example, the standard error would be as 
follows: 

𝐹𝐹𝑖𝑖𝐺𝐺𝑉𝑉𝑙𝑙 𝐶𝐶𝐶𝐶𝑚𝑚𝑏𝑏𝑖𝑖𝐺𝐺𝑅𝑅𝑑𝑑 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝 𝑆𝑆𝐸𝐸 =  ��
135
155

�
2

(1)2+ �
20

155
�
2

(1)2 = 0.88 (28) 

Therefore, the final combined composite index value is 1.62 divided by 0.88 or 1.85. This is the value in 
the teacher’s SGM report. If this teacher had three consecutive years of growth measures, then each 
yearly composite is estimated by the process outlined above, and the teacher’s SGM is a simple average 
of the three single-year composites. 

6.3 School Composites 
The composites calculated for schools are done in the exact same way as teachers described in the 
section above based on the applicable growth measures. 



 34 

 

7  EVAAS Projection Model 
In addition to providing value-added modeling, EVAAS provides projected scores for individual students 
on tests the students have not yet taken. These tests include all assessments that are used in value-
added models in the state of North Carolina. These projections can be used to predict a student’s future 
success or lack thereof. As such, this projection information can be used as an early warning indicator to 
guide counseling and intervention to increase students’ likelihood of future success.  

Currently, the following projections are available to educators in North Carolina: 

• EOG Reading in grades 3-8 

• EOG Math grades 4–8 

• EOG Science in grades 5 and 8 

• EOC Math 1, Math 3, Biology I, and English II 

• ACT Composite, English, Math, Reading, and Science 

• SAT Composite, Evidence-Based Reading and Writing, and Math 

• PSAT Composite, Evidence-Based Reading and Writing, and Math 

• CTE in various subjects 

• NCFE in various subjects 

• AP in various subjects 

Projections are made one or two grades above the last tested grade for EOG Reading and Math and to 
the next tested subject/grade or course for EOG Science, EOC, CTE, NCFE, ACT, SAT, PSAT, and AP. 

The statistical model that is used as the basis for the projections is, in traditional terminology, an 
analysis of covariance (ANCOVA) model. This model is the same statistical model used in the URM 
methodology applied at the school level described in Section 3.2.2. In this model, the projected score 
serves as the response variable (𝑦𝑦), the covariates (𝑥𝑥s) are scores on tests the student has already taken, 
and the categorical variable is the school at which the student received instruction in the 
subject/grade/year of the response variable (𝑦𝑦). Algebraically, the model can be represented as follows 
for the 𝑖𝑖𝑡𝑡ℎ  student.  

𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦 + 𝛼𝛼𝑖𝑖 + 𝑋𝑋1(𝑥𝑥𝑖𝑖1 − 𝜇𝜇1) + 𝑋𝑋2(𝑥𝑥𝑖𝑖2− 𝜇𝜇2) +⋯+ 𝜖𝜖𝑖𝑖 (29) 

The 𝜇𝜇 terms are means for the response and the predictor variables. 𝛼𝛼𝑖𝑖  is the school effect for the 𝑗𝑗𝑡𝑡ℎ 
school, the school attended by the 𝑖𝑖𝑡𝑡ℎ  student. The 𝑋𝑋 terms are regression coefficients. Projections to 
the future are made by using this equation with estimates for the unknown parameters (𝜇𝜇 s, 𝑋𝑋s, 
sometimes 𝛼𝛼𝑖𝑖 ). The parameter estimates (denoted with “hats,” e.g., �̂�𝜇, �̂�𝑋) are obtained using the most 
current data for which response values are available. The resulting projection equation for the 𝑖𝑖𝑡𝑡ℎ  

student is:  

𝑦𝑦�𝑖𝑖 =  �̂�𝜇𝑦𝑦 ±  𝛼𝛼�𝑖𝑖 + �̂�𝑋1(𝑥𝑥𝑖𝑖1 − �̂�𝜇1) + �̂�𝑋2(𝑥𝑥𝑖𝑖2 − �̂�𝜇2) +⋯+ 𝜖𝜖𝑖𝑖  (30) 

The reason for the “±” before the 𝛼𝛼�𝑖𝑖term is that, since the projection is to a future time, the school that 
the student will attend is unknown. Therefore, this term is usually omitted from the projections. This is 
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equivalent to setting 𝛼𝛼�𝑖𝑖  to zero, that is, to assuming that the student encounters the “average schooling 
experience” in the future.  

Two difficulties must be addressed in order to implement the projections. First, not all students will have 
the same set of predictor variables due to missing test scores. Second, because of the school effect in 
the model, the regression coefficients must be “pooled-within-school” regression coefficients. The 
strategy for dealing with these difficulties is exactly the same as described in Section 3.2.2 using 
equations (16) and (17) and will not be repeated here.  

Once the parameter estimates for the projection equation have been obtained, projections can be made 
for any student with any set of predictor values. However, to protect against bias due to measurement 
error in the predictors, projections are made only for students who have at least three available 
predictor scores. In addition to the projected score itself, the standard error of the projection is 
calculated (𝑆𝑆𝐸𝐸(𝑦𝑦�𝑖𝑖)). Given a projected score and its standard error, it is possible to calculate the 
probability that a student will reach some specified benchmark of interest (𝑏𝑏). Examples are the 
probability of scoring at level 3 on a future EOG test, or the probability of scoring sufficiently well on a 
college entrance exam to gain admittance into a desired program.  

Projections are made to levels 2–5 for the EOG and EOC tests, to the proficient level on the CTE tests 
only for students enrolled in those courses, the 50th and 80th percentile for the NCFE assessments, and 
to a level of 3 or higher, 4 or higher, or 5 on the AP assessments. Using college readiness assessments, 
projections are made to US and state averages for PSAT, ACT, and SAT and to the average ACT and SAT 
scores for incoming NC State University freshmen at various NCSU colleges.  

The probability is calculated as the area above the benchmark cutoff score using a normal distribution 
with its mean equal to the projected score and its standard deviation equal to the standard error of the 
projected score as described below. 𝛷𝛷 represents the standard normal cumulative distribution function.  

𝑃𝑃𝑉𝑉𝐶𝐶𝑏𝑏(𝑦𝑦�𝑖𝑖 ≥ 𝑏𝑏) =   𝛷𝛷�
𝑦𝑦�𝑖𝑖 − 𝑏𝑏
𝑆𝑆𝐸𝐸(𝑦𝑦�𝑖𝑖)

� (31) 
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8 Data Quality and Pre-Analytic Data Processing  
This section provides an overview of the steps taken to ensure sufficient data quality and processing for 
reliable value-added analysis. 

8.1 Data Quality 
Data are provided each year to EVAAS consisting of student test data and file formats. These data are 
checked each year to be incorporated into a longitudinal database that links students over time. Student 
test data and demographic data are checked for consistency year to year to ensure that the appropriate 
data are assigned to each student. Student records are matched over time using all data provided by the 
state, and teacher records are matched over time using the Unique ID and teacher’s name.  

8.2 Checks of Scaled Score Distributions 
The statewide distribution of scale scores is examined each year to determine whether they are 
appropriate to use in a longitudinally linked analysis. Scales must meet the three requirements listed in 
Section 2.1 and described again below to be used in all types of analysis done within EVAAS. Stretch and 
reliability are checked every year using the statewide distribution of scale scores sent each year before 
the full test data is given.  

8.2.1 Stretch 

Stretch indicates whether the scaling of the test permits student growth to be measured for either very 
low- or very high-achieving students. A test “ceiling” or “floor” inhibits the ability to assess growth for 
students who would have otherwise scored higher or lower than the test allowed. There must be 
enough test scores at the high or low end of achievement for measurable differences to be observed. 
Stretch can be determined by the percentage of students who score near the minimum or the maximum 
level for each assessment. If a large percentage of students scored at the maximum in one grade 
compared to the prior grade, then it might seem that these students had negative growth at the very 
top of the scale. However, this is likely due to the artificial ceiling of the assessment. Percentages for all 
North Carolina state assessments ultimately used in calculating growth measures are suitable for value-
added analysis; this means that the state tests have adequate stretch to measure value-added even in 
situations where the group of students are very high or low achieving. 

8.2.2 Relevance 

Relevance indicates whether the test has sufficient alignment with the state standards. The requirement 
that tested material will correlate with standards if the assessments are designed to assess what 
students are expected to know and be able to do at each grade level. This is how state tests are 
designed and is monitored by NCDPI and their psychometricians. 

8.2.3 Reliability 

Reliability can be viewed in a few different ways for assessments. Psychometricians view reliability as 
the idea that a student would receive similar scores if they took the assessment multiple times. This type 
of reliability is important for most any use of standardized assessments.  

8.3 Data Quality Business Rules 
More information about pre-analytic processing for student test scores is detailed below.  
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8.3.1 Missing Grade Levels 

In North Carolina, the grade level that is used in the analyses and reporting is the tested grade, not the 
enrolled grade. If a grade level is missing on any K-2 or EOG tests, then these records will be excluded 
from all analyses. The grade is required to include a student’s score into the appropriate part of the 
models, and it would need to be known if the score was to be converted into an NCE.  

8.3.2 Duplicate (Same) Scores 

If a student has a duplicate score for a particular subject and tested grade in a given testing period in a 
given school, then the extra score will be excluded from the analysis and reporting.  

8.3.3 Students with Missing Districts or Schools for Some Scores but Not Others 

If a student has a score with a missing district or school for a particular subject and grade in a given 
testing period, then the score that has a district and/or school will be included over the score that has 
the missing data. This rule applies individually to specific subject/grade/years.  

8.3.4 Students with Multiple (Different) Scores in the Same Testing Administration 

If a student has multiple scores in the same period for a particular subject and grade and the test scores 
are not the same, then those scores will be excluded from the analysis. If duplicate scores for a 
particular subject and tested grade in a given testing period are at different schools, then both of these 
scores will be excluded from the analysis. The highest composite combination of SAT subjects is used for 
SAT value-added and student college readiness projections. 

8.3.5 Students with Multiple Grade Levels in the Same Subject in the Same Year 

A student should not have different tested grade levels in the same subject in the same year. If that is 
the case, then the student’s records are checked to see if the data for two separate students were 
inadvertently combined. If this is the case, then student data are adjusted so that each unique student is 
associated with only the appropriate scores. If the scores appear to all be associated with a single 
unique student, then scores that appear inconsistent are excluded from the analysis. 

8.3.6 Students with Records That Have Unexpected Grade Level Changes 

If a student skips more than one grade level (e.g., moves from sixth grade last year to ninth grade this 
year) or is moved back by one grade or more (i.e. moves from fourth grade last year to third grade this 
year) in the same subject, then the student’s records are examined to determine whether two separate 
students were inadvertently combined. If this is the case, then the student data is adjusted so that each 
unique student is associated with only the appropriate scores. These scores are removed from the 
analysis if it is the same student. 

8.3.7 Students with Records at Multiple Schools in the Same Test Period 

If a student is tested at two different schools in a given testing period, then the student’s records are 
examined to determine whether two separate students were inadvertently combined. If this is the case, 
then the student data is adjusted so that each unique student is associated only with the appropriate 
scores. When students have valid scores at multiple schools in different subjects, all valid scores are 
used at the appropriate school.  
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8.3.8 Outliers 

8.3.8.1 Conceptual Explanation 

Student assessment scores are checked each year to determine whether any scores are “outliers” in 
context with all the other scores in a reference group of scores from an individual student. This is one of 
the protections in place with EVAAS analyses and reporting. This is a conservative process by which 
scores are statistically examined to determine if a score is considered an outlier. Is the score 
"significantly different" from the other scores as indicated by a statistical analysis that compares each 
score to the other scores? There are different business rules for the low outlier scores and the high 
outlier scores. This approach is more conservative when removing a very high achieving score; a lower 
score would be considered an outlier before a higher score would be considered an outlier. Again, this is 
a protection with EVAAS. 

8.3.8.2 Technical Explanation 

Student assessment scores are checked each year to determine whether they are outliers in context 
with the other scores in a reference group of scores from the individual student. These reference scores 
are weighted differently depending on proximity in time to the score in question. Scores are checked for 
outliers using related subjects as the reference group. For example, when searching for outliers for Math 
test scores, Math subjects (EOG and EOC assessments) are examined simultaneously during outlier 
identification for the state assessments, and any scores that appear inconsistent, given the other scores 
for the student, are flagged. Outlier identification for college readiness assessments use all available 
college readiness data alongside state assessments in the respective subject area (e.g., Math subjects 
with EOC, EOG, and PSAT tests might be used to identify outliers with SAT or ACT). Furthermore, K-2 
data are used solely for outlier identification with K-2. Lastly, CTE and AP assessments do not undergo 
outlier identification due to the various test taking patterns inherent with CTE and AP and the fact that 
these assessments have less uniformity in administration across the state than other statewide 
assessments. Scores are flagged in a conservative way to avoid excluding any student scores that should 
not be excluded. Scores can be flagged as either high or low outliers. Once an outlier is discovered, that 
outlier will not be used in the analysis, but it will be displayed on the student testing history on EVAAS 
web application. 

This process is part of a data quality procedure to ensure that no scores are used if they were in fact 
errors in the data, and the approach for flagging a student score as an outlier is fairly conservative.  

Considerations included in outlier detection are: 

• Is the score in the tails of the distribution of scores? Is the score very high or low achieving? 

• Is the score “significantly different” from the other scores as indicated by a statistical analysis 
that compares each score to the other scores?  

• Is the score also “practically different” from the other scores? Statistical significance can 
sometimes be associated with numerical differences that are too small to be meaningful.  

• Are there enough scores to make a meaningful decision? 

To decide whether student scores are considered outliers, all student scores are first converted into a 
standardized normal z-score. Then each individual score is compared to the weighted combination of all 
the reference scores described above. The difference of these two scores will provide a t-value of each 
comparison. This t-value provides information as to how many standard deviations away the score is 
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from the weighted combination of all the reference scores. Using this t-value, EVAAS can flag individual 
scores as outliers.  

There are different business rules for the low outliers and the high outliers, and this approach is more 
conservative when removing a very high achieving score.  

For low-end outliers, the rules are: 

• The percentile of the score must be below 50.  

• The t-value must be below -3.5 for EOGs and EOCs when determining the difference between 
the score in question and the weighted combination of reference scores (otherwise known as 
the comparison score). In other words, the score in question must be at least 3.5 standard 
deviations below the comparison score. For other assessments, the t-value must be below -4.0. 

• The percentile of the comparison score must be above a certain value. This value depends on 
the position of the individual score in question but will need to be at least 10 to 40 percentiles 
above the individual percentile score. 

For high-end outliers, the rules are: 

• The percentile of the score must be above 50.  

• The t-value must be above 4.5 for EOGs and EOCs when determining the difference between the 
score in question and the reference group of scores. In other words, the score in question must 
be at least 4.5 standard deviations above the comparison score. For other assessments, the t-
value must be above 5.0. 

• The percentile of the comparison score must be below a certain value. This value depends on 
the position of the individual score in question but will need to be at least 30 to 50 percentiles 
below the individual percentile score. There must be at least three reference scores used to 
make the comparison score.  
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