SAS® EVAAS

Statistical Models and Business Rules

Prepared for North Carolina Department of Public Instruction




Contents

1 Introduction to Value-Added Reporting in North Carolina.........cccccieieiieiiiiiici e, 1
7 0 T 1 - T[4 T o1 S 2
2.1 Determining Suitability of ASSESSMENTS......cuiiiiiiii e 2
2.0.0 CUITENT ASSESSIMEBNTS .. enitiieiet ittt ettt ettt ettt e e et et e et e et enaenaenaenenenenenns 2

2.2 Assessment Data Used in North Carolina.........ccuoiuiiiiiiiiii e e 2
2.2.0 ASSBSSIMENTS. .. eueuit ettt ettt ettt ettt e e e e e e e e e e e e e e e e e e e enenns 2

2.2.2 Student Identification Information..............cooiiiiiii i, 3

2.2.3 Assessment Information Provided .........cccuviiuiiiiiiniiiniin e 3

2.3 StUdent INFOrMAtioN ... iiue i e e e 3

2.4 TeaCher INfOrmMation ... .. et e et e e e e et e e aa e 4

3 Value-Added ANalySes .......ccceieiieiiiiiiiiiiercreicteteeeeeseaseaseeseesessessnssnssnssnssnssassassassassassansnnen 5
3.1 Multivariate Response Model (MRM).........iiiiiiiiiiii e e e e e e e e e eaa s 6
3.1.1 MRM at the ConceptUal LEVEL........cuiriniiii e eas 7

3.1.2 Normal Curve EQUIVAIENTS .......oviiii e e ea e 8

3.1.3 Technical Description of the Linear Mixed Model and the MRM............ccccccevieiieennnen. 11

3.1.4 Where the MRM is Used in North Carolina..........cccoeieiiiiiiii e, 18

3.1.5 Students Included in the ANalYSIs ......couuiiiiiii e 18

3.1.6 Minimum Number of Students for Reporting .........ccccoeeviiiiiiiiiieeee e, 19

3.1.7 Hurricane Florence Adjustment.........c.oiuiiiiiii e e e 20

3.2 Univariate Response Model (URM) ........iuuiiiiiiiie e e e e e e e e e 20
3.2.1 URM at the Conceptual LEVEL ........ivniiiiii e 21

3.2.2 Technical Description of the District, School, and Teacher Models..............ccccceeveenne.n. 21

3.2.3 Students Included in the ANalySis ........oiuiiii e 23

3.2.4 Minimum Number of Students for Reporting .........cccviiiiiiiiiiiiiee e, 24

4  Growth EXpectation.........ccoeieiieiiiiiii et er s s s s s s s n s e s a s a s ansnn s 25
4.1 Intra-Year Growth EXPeCtation .........oiiuiiiiiiiiiii e e e e e e et e e e e e eaa s 25
g I R I 1Yol ' [0 o Pt 25

4.1.2 Hlustrated EXamMIPIE ..eniiiei et aaas 25

4.2 Defining the Expectation of Growth During an Assessment Change...........c.ccoveiiiiiiiiniinennen. 26

5 Using Standard Errors to Create Levels of Certainty and Define Effectiveness .........ccccevieniiannans 27
5.1 Using Standard Errors Derived from the Models.........c.oooviiiiiiiiiiniiniii e, 27

5.2 Defining Effectiveness in Terms of Standard Errors.........cocueiiiiiiiiiiniii e, 27

5.3 Rounding and TrunCating RUIES. ..........iuniiiiiiiie e e e e e e et e e e aaaas 28

6 EVAAS Composite Calculations..........cciciieiieiiiieiicic e e e e rcrecrecracrnceneensensensensensensensensansnns 29
Lo A 1o o T [0 o1 4T o RPN 29

5.2 TEACNET COMPOSIEES. .evueirit ittt ettt et e ettt e et e et et e e et s e et e et e ean e eetaeeaaeeaneeannes 29
6.2.1 Calculate MRM-Based Composite Gain Across SUbJECtS ........ccvviiiiiiiiiiiiiiiiieece e, 30

6.2.2 Calculate MRM-Based Standard Error ACross SUBJECES.........vvvvuiiiiniiiiiiiiieii e 30

6.2.3 Calculate MRM-Based Composite Index Across SUbjects.........cocuviiiiiiiiiiiiiiiiieciecee, 32

6.2.4 Calculate URM-Based Index Across SUDJECES. ... ....uiuiiiiiiiici e 32

6.2.5 Calculate the Combined MRM and URM Composite Index Across Subjects.................... 33

(S Yol o To o] N @] 1 o] o To 1Y TN 33

7 EVAAS Projection MOodel.......coivuiieiiiiieiiiiiieiiiiiiiieiiieiiiniiisieiisiresiesiasrasissiessrssssassassases 34

080620034-2911. Copyright © 2020SAS Institute Inc. All rights reserved SAS andall other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ®indicates USA registration. Other brand and product names are trademarks of their respective companies.



8 Data Quality and Pre-Analytic Data ProcCessing........cccevieuieiieiieiieiienienienienieninsiesiesiesrossnssassnssnns 36

I D | - N O [V F-] 1 A APPSR 36
8.2 Checks of Scaled SCOre DistribULIONS. ........viueiiiriiir e e e e 36
N ] 1 <] ol o PSPPSR 36
8.2.2 R BVANCE ettt ettt ettt e e e e 36
8.2.3 REIIADITY.c.uieeeeii e et eaas 36
8.3 Data QUAlity BUSINESS RUIES ...vuiiiiiiiiie e e e e e e et e et e et e it et eaaanas 36
8.3.1 MiSSING Grade LEVEIS .....ceuiii i 37
8.3.2 DUPIICAtE (SAME) SCOMES. .. v ittt e e e e e e e e ans 37
8.3.3 Students with Missing Districts or Schools for Some Scores but Not Others ................... 37
8.3.4 Students with Multiple (Different) Scores in the Same Testing Administration ............... 37
8.3.5 Students with Multiple Grade Levels in the Same Subject in the Same Year................... 37
8.3.6 Students with Records That Have Unexpected Grade Level Changes...........ccevvvuveeunnnenn. 37
8.3.7 Students with Records at Multiple Schools in the Same Test Period...............ccceevnennen. 37

e TR T 0 101 1= 38




1 Introduction to Value-Added Reportingin North Carolina

Since 2001, EVAAS growth reporting (or value-added reporting) has been available to North Carolina
educators and has also been available statewide since 2006. The purpose of EVAAS is to support
educators with school improvement through both reflective and proactive planning tools.

Since its inception, EVAAS growth measures focused on the growth of students over time rather than
their achievement level. EVAAS represented a paradigm shift for educators and policymakers and, in
identifying the more effective practices and less effective practices, educators receive personalized
feedback, which they could then leverage toimprove the academic experiences of their students.

The term “value-added” refers to a statistical analysis used to measure the amount of academic growth
students make from year to year with a district, school, or teacher. Conceptuallyand as a simple
explanation, a value-added measure s calculatedin the following manner:

e Growth= current achievement/current results comparedto all prior achievement/prior results
with achievement being measured by a quality assessment suchas the EOG tests.

Although the concept of growth is easy to understand, the implementation of a statistical model of
growthis more complex. There are several decisions related to the available modeling, local policies and
preferences, and business rules. Key considerations in the decision-making process include:

e What data areavailable?

e Given the available data, what types of models are possible?

e What is the growth expectation?

e How is effectiveness defined in terms of a measure of certainty?

e What arethe business rules and policy decisions that impact the way the data are processed?

The purpose of this document is to guide you through the value-added modeling based on the statistical
approaches, policies, and practices selected by the North Carolina Department of Public Instructionand
currently implemented by SAS. This document describes the input data, modeling, and business rules for
district, school, and teacher value-added reporting in North Carolina.




2 Data Inputs

This section provides details about the input data usedin the North Carolina value-added model as well
as the student, teacher, and school information provided in the assessment files.

2.1 Determining Suitability of Assessments

2.1.1 Current Assessments

To be used appropriately in any value-added analyses, the scales of these tests must meet three criteria.
(Additional details about each of these requirements are provided in Section 8.)

o Thereis sufficient stretch in the scales to ensure that growth can be measured for both low-
achieving students as well as high-achieving students. Afloor or ceiling in the scales could
disadvantage educators serving either low-achieving or high-achieving students.

o Thetestis designed to assess the academic standards, soit is possible to measure growth with
the assessmentinthat subject/grade/year. More information can be found at the following link:
http://www.dpi.state.nc.us/curriculum.

o Thescales are sufficiently reliable from one year to the next. This criterion typically is met
when there are a sufficient number of items per subject/grade/year, and this will be monitored
each subsequent year that the test is given.

These criteria are monitored by SAS and psychometricians at NCDPI.

2.2 Assessment Data Used in North Carolina

2.2.1 Assessments

SAS receives the following assessmentsfor EVAAS reporting:
e End-of-grade Mathand Reading in grades 3—8
e End-of-grade Science in grades 5and 8
e End-of-course assessments in Biology, EnglishIl, Math 1, and Math 3
e Reading assessmentsin K-2
e North Carolina Final Exam assessmentsinvarious subjects
e CareerandTechnical Education assessmentsinvarious subjects
e ACTassessmentsinEnglish, Math, Reading, Science, and Composite
e SAT assessmentsin Evidence-Based Reading and Writing, Math, and Composite
e PSAT assessmentsin Evidence-Based Reading and Writing and Math
e AP assessmentsinvarious subjects

The state End-of-Grade (EOG) tests are administeredin the spring semester with the exception of EOG

Reading for grade 3, which is testedin both fall and spring. The End-of-Course (EOC) assessments, North
Carolina Final Exams (NCFEs), and Career and Technical Education assessments (CTEs) are typically given
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in the fall and spring semesters with the occasional summer administration. The K-2 assessmentsare
administeredthree times throughout the year.
2.2.2 Student Identification Information
SAS receives the following information from NCDPI:
e Student lastname
e Student first name
e Student date of birth
e Student state ID number (Unique Student ID (USID))

2.2.3 Assessment Information Provided
SAS alsoreceives the following information from NCDPI:
e Scale score
e Testtaken
e Testedgrade
e Testedsemester
e District number
e School number

o Membership
e Accountability Growth Membership
e Partial Enrollment

e TestForm

e FirstYear English Learner (EL)

At times, raw scores are provided for the NCFE, and pre-test scores are provided for the CTE
assessments.

2.3 StudentInformation

Student information is used in creating the web application to assist educators analyze the data to
inform practice and assist all students with academic growth. SAS receives this information in the form
of various socioeconomic, demographic, and programmatic identifiers provided by NCDPI. Currently,
these categories are as follows:

e Academically or Intellectually Gifted (Y, N)
e Gender (M, F)

e EnglishLearners (EL) (Y, 1, 2, U, N)

e Economically Disadvantaged Students (Y, N)
e Students with Disabilities (Y, N)




Race

e AmericaniIndian/Alaskan Native
e Asian/Pacific Islander

e Black(not Hispanic)

e Hispanic

e Two or More Races

e White (not Hispanic)

2.4 TeacheriInformation

A high level of reliability and accuracyis critical for using value-added scores for both improvement
purposes and high stakes decision-making. Before teacher value-added measures are calculated,
teachers in North Carolina have the opportunity to complete roster verification to verify linkages
between themselves and their students during the year. Roster verification captures different teaching
scenarios where multiple teachers canshare instruction. Verification makes teacher analyses much
more reliable and accurate.

Roster verification is completed within the EVAAS web application. NCDPI provides SAS with a file that
contains the approved teacher-student linkage data enteredinto PowerSchool:

Teacher identification
e Teacher Name
e TeacherUnique ID

Student linking information

e Student Last Name

e Student First name

e Unique Student ID (USID)

Course information linked to a tested subject via a course to subject mapping provided by DPI
District and School information (numbers)

Percentage of instructional responsibility derived from enrollment information provided by DPI
(i.e., the date the student enrolled and the date the student left the course)




3 Value-Added Analyses

As outlined in the introduction, the conceptual explanation of value-added reporting is the following:

e Growth= current achievement/current results comparedto all prior achievement/prior results
with achievement being measured by a quality assessment such as the EOG

In practice, growth must be measured using an approach that is sophisticated enough to accommodate
many non-trivial issues associated with student testing data. Suchissues include students with missing
test scores, students with different entering achievement, and measurement errorin the test. In North
Carolina, EVAASincludes two main categories of value-added models, each comprised of District,
School, and Teacher reports.

e Multivariate Response Model (MRM) s used for tests givenin consecutive grades, like the EOG
Mathand Reading in grades 3—8 or the K-2 early grade assessments.

e Univariate Response Model (URM)is used for tests givenin multiple grades, suchas the EOC,
NCFE or CTE assessments, or when performance from previous tests is used to predict
performance on another test.

Both models offer the following advantages:

o The models include multiple subjects and grades for each student to minimize the influence of
measurement error.

o The models can accommodate tests on different scales.

o The models can accommodate students with different sets of testing history.

e The models do not impute any test scores for students who are missing test scores.
e The models can accommodate teamteaching or other sharedinstructional practices.

Each model is describedin greater detailin Section 3.1 (MRM) and Section 3.2 (URM) of this document.

Because the EVAAS models use multiple subjects and grades for each student, it is typically not
necessarytomake direct adjustments for students’ background characteristics. Inshort, these
adjustments are not necessary because each student serves as his or her own control. To the extent that
socioeconomic and demographic influences persist over time, these influences are already represented
in the student’s data. As a 2004 study by The Education Trust stated, specifically withregardto the
EVAAS modeling:

[1]f a student’s family background, aptitude, motivation, or any other possible factor has
resultedin low achievement and minimal learning growth in the past, all that is taken into
account when the system calculates the teacher’s contributionto student growthin the present.

Source: Carey, Kevin. 2004. “The Real Value of Teachers: Using New Information about Teacher
Effectiveness to Close the Achievement Gap.” Thinking K-16 8(1): 27.

In other words, while technically feasible, adjusting for student characteristicsin sophisticated modeling
approaches is typically not necessaryfrom a statistical perspective, and the value-added reporting in
North Carolina does not make any direct adjustments for students’ socioeconomic or demographic
characteristics. Through this approach, North Carolina avoids the problem of building a system that
creates differential expectations for groups of students based on their backgrounds.

The value-added reporting in North Carolina is available for districts, schools, and teachers.




3.1 Multivariate Response Model (MRM)

EVAAS includes three separate analyses using the MRM approach, one each for districts, schools, and
teachers. The district and school models are essentially the same. They perform well with the large
numbers of students that are characteristic of districts and most schools. The teacher model uses a
different approach thatis more appropriate with the smaller numbers of students typically found in
teachers’ classrooms. Allthree models are statistical models known as linear mixed models and can be
further described as repeated measures models.

The MRM is a gain-based model, which means it measures growth between two points in time for a
group of students. The current growth expectationis met when a cohort of students from grade to
grade maintains the same relative position with respect to statewide student achievement in that year
for a specific subject and grade. (See Intra-Year Approachin Section 4 for more details.)

The key advantages of the MRM approach can be summarized as follows:

o All students with valid data are included in the analyses. Each student’s testing historyis
included without imputing any test scores.

e Byencompassing allstudents in the analyses, including those with missing test scores, the
model provides the most realistic estimate of achievement available.

e The model minimizes the influence of measurement error inherent in academic assessments by
using multiple data points of student test history and multiple years of data.

e The model uses scores from multiple tests, including those on different scales.

o The model accommodates teaching scenarios where more than one teacher has responsibility
for a student’s learning in a specific subject, grade, and year.

o The model analyzes multiple consecutive grades and subjects simultaneously to improve
precision and reliability.

As a result of these advantages, the MRM is consideredto be one of the most statistically robust and
reliable approaches. The references below include studies by experts from RAND Corporation, a non-
profit research organization:

o Onthe choice of a complexvalue-added model: McCaffrey, Daniel F., andJ.R. Lockwood. 2008.
“Value-Added Models: Analytic Issues.” Prepared for the National Research Council and the
National Academy of Education, Board on Testing and Accountability Workshop on Value-Added
Modeling, Nov. 13-14, 2008, Washington, DC.

e Onthe advantages ofthe longitudinal, mixed modelapproach: Lockwood, J.R. and Daniel F.
McCaffrey. 2007. “Controlling for Individual Heterogeneity in Longitudinal Models, with
Applications to Student Achievement.” Electronic Journal of Statistics 1:223-252.

e Onthe insufficiency of simple value-added models: McCaffrey, Daniel F., B. Han, and J.R.
Lockwood. 2008. “From Data toBonuses: A Case Study of the Issues Related to Awarding
Teachers Payon the Basis of the Students' Progress.” Presented at Performance Incentives:
Their Growing Impact on AmericanK-12 Education, Feb. 28-29, 2008, National Center on
Performance Incentives at Vanderbilt University.

Despite suchrigor, the MRM model is quite simple conceptually: Did a group of students maintainthe
same relative position with respect to statewide student achievement from one year to the next for a
specific subject and grade?




3.1.1 MRM at the Conceptual Level

An example data set with some description of possible value-added approaches might be helpful for
conceptualizing how the MRM works. Assume that 10 students complete a test in two different years
with the results shownin Figure 1. The goal is to measure academic growth (gain) from one year to the
next. Two simple approaches are to calculate the mean of the differences or to calculate the differences
of the means. When thereis no missing data, these two simple methods provide the same answer (5.80
on the left in Figure 1); however, when there is missing data, each method provides a different result
(9.57 versus 3.97 on theright in Figure 1). A more sophisticated model is needed to address this
problem.

Figure 1: Scores without missing data, and scores with missing data

Student  Previous Current Gain Student  Previous Current Gain
Score Score Score Score
1 51.9 74.8 22.9 1 51.9
2 37.9 46.5 8.6 2 37.9
3 55.9 61.3 5.4 3 55.9 61.3 5.4
4 52.7 47.0 -5.7 4 52.7 47.0 -5.7
5 53.6 50.4 -3.2 5 53.6 50.4 -3.2
6 23.0 35.9 12.9 6 23.0 35.9 12.9
7 78.6 77.8 -0.8 7 77.8
8 61.2 64.7 3.5 8 64.7
9 47.3 40.6 -6.7 9 47.3 40.6 -6.7
10 37.8 58.9 21.1 10 37.8 58.9 21.1
Column 49.99 55.79 5.80 Column 45.01 54.58 3.97
Mean Mean
Difference between Current and 5.80 Difference between Current and 9.57
Previous Score Means Previous Score Means

The MRM uses the correlation between current and previous scores in the nonmissing data to estimate
a meanfor the set of all previous and all current scores as if there were no missing data. It does this
without explicitly assigning values for the missing scores. The difference between these two estimated
means is an estimate of the average gain for this group of students. Inthis small example, the estimated
difference on the rightis 5.71 when using the MRM approach to first estimate the means in each
column and taking the difference. Even in a small example such as this, the estimated difference is much
closer to the difference with no missing data (on the left) than either measure obtained by the mean of
the differences (3.97) or difference of the means (9.57) on the right. This method of estimation has been
shown, on average, to outperform both of the simple methods.* Inthis smallexample, there were only

! See, for example, S. Paul Wright, “Advantages of a Multivariate Longitudinal Approach to Educational Value-Added Assessment Without

Imputation,” Paper presented at National Evaluation Institute, 2004.




two grades and one subject. Larger data sets, such as those usedin actual EVAAS analyses for North
Carolina, provide better correlation estimates by having more student data, subjects, and grades, which
in turn provide better estimates of means and gains.

This small example is meant toillustrate the need for a model that will accommodate incomplete data
and provide a reliable measure of growth. It represents the conceptualidea of what is done withthe
school and district models. The teacher model is slightly more complex, and all models are explained in
more detail below (in Section 3.1.3). The first stepin the MRM s to define the scores that will be usedin
the model.

3.1.2 Normal Curve Equivalents

3.1.2.1 WhyEVAAS Uses Normal Curve Equivalents in MRM

The MRM estimates academic growth as a “gain,” or the difference between two measures of
achievement from one point in time to the next. For such a difference to be meaningful, the two
measures of achievement (that s, the two tests whose means are being estimated) must measure
academic achievement on a common scale. Some test companies supply vertically scaled tests as a way
to meet this requirement. A reliable alternative when vertically scaled tests are not available is to
convert scale scores to normal curve equivalents (NCEs).

NCEs are on a familiar scale because they are scaled to look like percentiles. However, NCEs have a
criticaladvantage for measuring growth: they are on an equal-interval scale. This means that for NCEs,
unlike percentile ranks, the distance between 50 and 60 is the same as the distance between 80 and 90.
NCEs are constructedto be equivalent to percentile ranks at 1, 50, and 99, with the mean being 50 and
the standard deviation being 21.063 by definition. Although percentile ranks are usually truncated
above 99 and below 1, NCEs are allowed to range above 100 and below 0 to preserve their equal-
interval property and to avoid truncating the test scale.

For example, in a typical yearin North Carolina, the average maximum NCE is approximately 110,
corresponding to percentile rankings above 99.0. However, for display purposes in the EVAAS web
application and to avoid confusion among users with interpretation, NCEs are shown as integers from 1-
99. Truncating would create an artificial ceiling or floor, which might bias the results of the value-added
measure for certain types of students. This forces the gain tobe closeto 0, or even negative, sothe
actual calculations use non-truncated numbers.

The NCEs usedin EVAAS analyses are based on a reference distribution of test scores in North Carolina.
The reference distribution is the distribution of scores on a state-mandated test for all studentsin each
year.

By definition, the mean (or average) NCE score for the reference distribution is 50 for each grade and
subject. “Growth” is the difference in NCEs from one year/grade to the next in the same subject. The
growth standard, which represents a “normal” year’s growth, is defined by a value of zero. More
specifically, it maintains the same position in the reference distribution from one year/grade to the next.
Itis importantto reiterate that a gain of zero on the NCE scale does not indicate “no growth.” Rather, it
indicates that a group of students in a district, school, or classroom has maintained the same position in
the state distribution from one grade to the next. The expectation of growth is set by using each
individual year to create NCEs. For more on Growth Expectation, see Section 4.




3.1.2.2 HowEVAAS Uses NCEs in MRM

There are multiple ways of creating NCEs. EVAAS MRM uses a method that does not assume that the
underlying scale is normal since experience has shown that some testing scales are not normally
distributed and this will ensure an equal interval scale. Table 1 provides an example of the way that
EVAAS converts scale scores to NCEs.

The first five columns of Table 1 show an example of a tabulated distribution of test scores from North
Carolina data. The tabulation shows, for each possible test score, ina particular subject, grade, and year,
how many students made that score (“Frequency”) and what percentage (“Percent”) that frequency was
out of the entire student population. (In Table 1, the total number of students is approximately
130,000). Also tabulated are the cumulative frequency (“Cum Freq,” which is the number of students
who made that score or lower) and its associated percentage (“Cum Pct”).

The next stepis to convert each score to a percentile rank, listedas “Ptile Rank” on the right side of
Table 1. If a particular score has a percentile rank of 48, this is interpretedto mean that 48% of students
in the population had a lower score and 52% had a higher score. In practice, there is some percentage of
students that will receive each specific score. For example, 2.8% of students received a score of 446 in
Table 1. The usual convention is to consider half of that 2.8% to be “below” and half “above.”
Subtracting 1.4% (half of 2.8%) from the 33.6% who scored below the score of 446 produces the
percentile rank of 32.2 in Table 1.

Table 1: Converting tabulated test scores to NCE values

Score Frequency Cum Freq Percent CumPct Ptile Rank Z NCE
446 3406 40544 2.8 33.6 32.2 -0.423 40.08
447 5022 45566 4.2 37.8 35.7 -0.312 42.09
448 3589 49155 3.0 40.8 39.2 -0.234 44.07
449 5423 54578 4.5 45.3 43.0 -0.120 46.10
450 3727 58305 3.1 48.3 46.8 -0.042 48.12
451 6037 64342 5.0 53.4 50.9 0.084 50.26
452 4023 68365 3.3 56.7 55.0 0.168 52.47

NCEs are obtained from the percentile ranks using the normal distribution. Using a table of the standard
normal distribution (found in many textbooks) or computer software (for example, a spreadsheet), one
can obtain the associated Z-score from a standard normal distribution for any given percentile rank.
NCEs are Z-scores that have been rescaled to have a “percentile-like” scale. Specifically, NCEs are scaled
so that they exactly match the percentile ranks at 1, 50, and 99. This is accomplished by multiplying each
Z-score by approximately 21.063 (the standard deviation on the NCE scale) and adding 50 (the mean on
the NCE scale). NCEs are further adjusted by considering a statewide MRM model and accounting for
missing test scores to ensure that the average achievement on the NCE scaleis 50 for each subject and
grade modeled.




3.1.2.3 HowEVAAS Uses NCEs in the K-2 Assessment

NCEs canalso be created for assessmentswhere the underlying scale is not inherently numeric in
nature. One such assessment is the K-2 Text Reading and Comprehension assessment, which presents
student achievement results in book levels and performance levels. Book levels range from Print
Concepts (PC), Reading Behaviors (RB), B, Cand soon up to U. PCis the lowest possible book level, and
U is the highest possible book level on the distribution of possible book levels. Furthermore, each book
level has three performance levels corresponding to the student’s reading and comprehension mastery
of the text: Frustrational, Instructional, and Independent. Even though book levels and performance
levels are non-numeric, the combination of the two provides the measured reading and comprehension

ability of the test taker.

The frequencies of all observed book levels and performance levels of a population of test takers can be
aggregatedinanoverall scoring distribution where each book and performance level are translatedto
corresponding percentiles and NCEs just as the case with other assessmentsthat report numeric scale
scores. NCEs for the K-2 Assessment in North Carolina are calculated by grade and benchmark period:
Beginning-of-Year (BOY), Middle-of-Year (MOY), and End-of-Year (EQY). For example, Figure 2 displays
the NCEs associated with book and performance levels and the frequency of eachlevel for the 2018

Grade 2 EQY Text Reading and Comprehension assessment.

Figure 2: NCEs for the 2018 2nd Grade EOY Text Reading and Comprehensionassessment
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3.1.3 Technical Description of the Linear Mixed Model and the MRM

The linear mixed model for district, school, and teacher value-added reporting using the MRM approach
is represented by the following equation in matrix notation:

y=Xf+Zv+e (1)

y (in the EVAAS context) is them X 1 observation vector containing test scores (NCEs) for all students in
multiple academic subjects tested over all grades and years.

X is aknown m X p matrix that allows the inclusion of any fixed effects. Fixed effects are factors within
the model that come from a finite population, such as all of the individual schools in the state of North
Carolina. Inthe school model, there is a fixed effect for every school/year/subject/grade. This matrix
would have a row for each of these combinations.

B is an unknown p X 1 vector of fixed effects to be estimated from the data.

Z is aknown m X g matrix that allows for the inclusion of random effects. In contrast to fixed effects,
random effects do not come from a fixed population but rather can be thought of as a random sample
coming from a large population where not all individuals in that population are known. This is more
appropriate for the teacher model for many reasons: not all teachers are included (e.g., smallclass
sizes), new teachers start each year while others leave eachyear, etc. As such, teachers are treated as
random factors in this model.

v is a non-observable g X 1 vector of random effects whose realized values are to be estimated from
the data.

€ is a non-observable m X 1 random vector variable representing unaccountable random variation.

Both v and € have means of zero, thatis, E(v = 0) and E(e = 0). Their joint varianceis given by:

var[?]=[¢ )

where R is the m X m matrix that reflects the correlation among the student scores residual to the
specific model being fitted to the data, and G is the g X g variance-covariance matrix that reflects the
correlation among the random effects. If (v, €) are normally distributed, the joint density of (y,v)is
maximized when S hasvalue b and v has value u given by the solution to the following equations,
known as Henderson’s mixed model equations:?2

X"R7'x  X"R7'Z ] HE [X "Ry )

ZTR™1X ZTR™'z+ G 1l [ZTR™1y

Let a generalizedinverse of the above coefficient matrix be denoted by

2 Sanders, William L., Arnold M. Saxton, and Sandra P. Horn. 1997. “The Tennessee Value-Added Assessment System: A Quantitative,
Outcomes-Based Approach to Educational Assessment.” In Grading Teachers, Grading Schools, ed. Jason Millman, 137-162. Thousand Oaks, CA:

Sage Publications.
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If G and R are known, then some of the properties of a solution for these equations are:

1.

Equation (5) below provides the best linear unbiased estimator (BLUE) of the set of estimable
linear function, K7 8, of the fixed effects. The second equation (6) below represents the variance
of that linear function. The standard error of the estimable linear function can be found by
taking the square root of this quantity.

E(KTB)=KTh (5)
Var(K™b) = (KT)C,1 K (6)
Equation (7) below provides the best linear unbiased predictor (BLUP) of v.
E(v|u) =u (7)
Var(u—v) = C,, (8)

where u is unique regardless of the rank of the coefficient matrix.

The BLUP of a linear combination of random and fixed effects can be given by equation (9)
below provided that KT is estimable. The variance of this linear combination is given by
equation (10).

E(KTB+M™v|u)=KTh+ MTu (9)
Var(KT(b— B) + MT (u—v)) = (KTMT)C(KTMT)T (10)
With G and R known, the solution for the fixed effects is equivalent to generalized least squares,

and if vand e are multivariate normal, then the solutions for B and v are maximum likelihood.

If G and R are not known, then as the estimated G and R approachthe true G and R, the
solution approaches the maximum likelihood solution.

If v and € are not multivariate normal, then the solution to the mixed model equations still
provides the maximum correlation between v and u.

This section describes the technical details specifically around the MRM approach. However, many more
details describing the linear mixed model can be found in various statistical texts.3

3.1.3.1 Districtand SchoolModels

The district and school MRMs do not contain random effects; consequently, in the linear mixed model,
the Zv termdrops out. The X matrixis an incidence matrix (a matrix containing only zeros and ones)

3See, for example, Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models (Hoboken, NJ: Wiley,

2008).
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with a column representing eachinteraction of school (in the school model), subject, grade, and year of
data. The fixed-effects vector 8 contains the mean score for each school, subject, grade, and year, with
each element of 8 corresponding to a column of X. Since MRMs are generally run with each school
uniquely defined across districts, there is no need to include district in the model.

Unlike the case of the usual linear model usedfor regression and analysis of variance, the elements of €
are not independent. Their interdependence is captured by the variance-covariance matrix, also known
as the R matrix. Specifically, scores belonging to the same student are correlated. Ifthe scoresin y are
ordered so that scores belonging to the same student are adjacent to one another, then the R matrix is
block diagonal witha block, R;, for each student. Eachstudent’s R; is a subset of the “generic”
covariance matrix R that contains a row and column for each subject and grade. Covariances among
subjects and grades are assumedto be the same for all years (technically, all cohorts), but otherwise,
the R, matrixis unstructured. Eachstudent’s R; contains only those rows and columns from R that
match the subjects and grades for which the student has test scores. Inthis way, the MRM is able to use
all available scores from each student.

Algebraically, the district MRM is represented as:

Yijkid = Hjkia T €ijkid (11)

where y;ji;4 represents the test score for the i studentin the j* subject in the k™ grade during the
[*" year in the d" district. Uijkia is the estimated meanscore for this particular district, subject, grade,
and year. €; jq is the random deviation of the i" student’s score from the district mean.

The school MRM is represented as:

Yijkis = Hjkis T €ijiis (12)

This is the same as the district analysis with the replacement of subscript d with subscript s representing
the st school.

The MRM uses multiple years of data to estimate the covariances that can be found in the matrix R,,.
This estimation of covariances is done within each level of analyses and can resultin slightly different
values within each analysis. Eachlevel of analysis will use the values found within that analysis.

Solving the mixed model equations for the district or school MRM produces a vector b that contains the
estimated meanscore for each school (in the school model), subject, grade, and year. To obtain a value-
added measure of average student growth, a series of computations can be done using the students
from a school in a particular year and all of their prior year schools. Because students might change
schools from one year to the next (in particular when transitioning from elementaryto middle school,
for example), the estimated mean score for the prior year/grade uses a weighted average of schools
that fed students intothe school, grade, subject, and year in question. Prior year schools are not used if
they are feeding students in very smallamounts (fewer than five) since those students likely do not
represent the overall achievement of the school that they are coming from. For certain schools with very
large rates of mobility, the estimated mean for the prior year/grade includes only students who tested
in the current year. Mobility is taken into account within the model so that growth of students is
computed using all students in each school, including those who might have moved buildings from one
year to the next.
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The computation for obtaining a growth measure can be thought of as a linear combination of fixed
effects from the model. The best linear unbiased estimate for this linear combination is given by
equation (5). The growth measures are reported along with standard errors, and these can be obtained
by taking the square root of equation (6).

Furthermore, in addition to reporting the estimated mean scores and mean gains produced by these
models, the value-added reporting includes (1) cumulative gains across grades (for each subject and
year), and (2) up to 3-year average gains (for each subject and grade). In general, these are all different
forms of linear combinations of the fixed effects and their estimates, and standard errors are computed
in the same manner described above.

3.1.3.2 Teacher Model

As a protection to teachers, the teacher estimates use a more conservative statistical process tolessen
the likelihood of misclassifying teachers. Eachteacher effectis assumedtobe the state averageina
specific year, subject, and grade until the weight of evidence pulls the teacher effect either above or
below that state average. Furthermore, the teacher modelis a “layered” model, which means that:

e The currentand previous teacher effects are incorporated.
e Eachteacherestimatetakesintoaccount all the students’ testing data over the years.

e The percentage of instructional responsibility (instructional time) the teacher has for each
studentis used.

Each element of the statistical computation for teacher value-added modeling provides a layer of
protection against misclassifying eachteacher estimate.

For reasons described when introducing random effects, the MRM treats teachers as random effects via
the Z matrixin the linear mixed model. The X matrix contains a column for each subject/grade/year,
and the b vector contains an estimated meanscore for each subject/grade/year. The Z matrix contains a
column for each subject/grade/year/teacher, andthe u vector contains an estimated teacher effect for
each subject/grade/year/teacher. The R matrixis as described above for the district or school model.
The G matrix contains teacher variance components, with a separate unique variance component for
each subject/grade/year. Toallow for the possibility that a teacher might be very effective in one
subject and very ineffective in another, the G matrix is constrained to be a diagonal matrix.
Consequently, the G matrixis a block diagonal matrix with a block for each subject/grade/year. Each
block has the form azjkll where szkl is the teacher variance component for t the j* subject in the k"

lth

gradein the [*"* year, and I is an identity matrix.

Algebraically, the teacher model is represented as:

T jrer*
Yijki = Kjikr + Z z Wik e X Tijirrre | €ijra (13)
i<k t=1

Yiji1 is the test score for the i*" student in the j™ subject in the k™grade in the I year. 7; j+ ;¢ is the
teacher effect of the t " teacher on the i student in the j* subjectin grade k* in year [*. The
complexity of the parenthetical term containing the teacher effects is due to two factors. First, inany
given subject/grade/year, a student might have more than one teacher. The inner (rightmost)
summation is over all the teachers of the i student in a particular subject/grade/year. Tjjk+1t 1S the
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effect of those teachers. w; -+ is the fraction of the i™" student’s instructional time claimed by the t "
teacher. Second, as mentioned above, this model allows teacher effects to accumulate over time. That
is, how well a student does in the current subject/grade/year depends not only on the current teacher
but also on the accumulated knowledge and skills acquired under previous teachers. The outer
(leftmost) summation accumulates teacher effects not only for the current (subscripts k and ) but also
over previous grades and years (subscripts k* and [*) in the same subject. Because of this accumulation
of teacher effects, this type of model is often called the “layered” model.

In contrast tothe model for many district and school estimates, the value-added estimates for teachers
are not calculated by taking differences between estimated meanscores to obtain mean gains. Rather,
this teacher model produces teacher “effects” (in the u vector of the linear mixed model). Italso
produces, in the fixed-effects vector b, state-level mean scores (for eachyear, subject and grade).
Because of the waythe X and Z matrices are encoded, in particular because of the “layering” in Z,
teacher gains can be estimated by adding the teacher effect to the state meangain. That is, the
interpretation of ateacher effect in this teacher model is expressed as a deviation from the average gain
for the statein a given year, subject, and grade.

Table 2 illustrates how the Z matrixis encoded for three students who have three different scenarios of
teachers during grades three, four, and five in two subjects, math (M) and reading (R).

Tommy’s teachers represent the conventional scenario: Tommy is taught by a single teacher in both
subjects each year (teachers Abbot, Card, and Eastin grades 3, 4, and 5, respectively). Notice that in
Tommy’s Z matrix rows for grade 4, there are ones (representing the presence of a teacher effect) not
only for fourth-grade teacher Card but alsofor third-grade teacher Abbot. This is how the “layering” is
encoded. Similarly, in the grade 5 rows, there are ones for grade 5 teacher East, grade 4 teacher Card,
and grade 3 teacher Abbot.

Susan is taught by two different teachers in grade 3, teacher Abbot for Math and, teacher Banks for
Reading. Ingrade 4, Susan had teacher Cardfor reading. For some reason, in grade 4 no teacher claimed
Susan for Math even though Susan had a grade 4 Mathtest score. This score can still be included in the
analysis by entering zeros into the Susan’s Z matrix rows for grade 4 Math. In grade 5, on the other
hand, Susan had no test score in Reading. This row is completely omitted from the Z matrix. There will
always be a Z matrixrow corresponding to each test score in the y vector. Since Susan has no entryin y
for grade 5 Reading, there can be no corresponding row in Z.

Eric’s scenarioillustrates team teaching. Ingrade 3 Reading, Eric received an equal amount of
instruction from both teachers Abbot and Banks. The entries in the Z matrixindicate eachteacher’s
contribution, 0.5 for each teacher. Ingrade 5 Math, however, while Eric was taught by both teachers
East and Farr, they did not make an equal contribution. Teacher East claimed 80% responsibility and
teacher Farr claimed 20%.

Teacher effect estimates are obtained by shrinkage estimation, technically known as best linear
unbiased prediction or as empirical Bayesian estimation. This is a characteristic of random effects from a
mixed model and means that a priori a teacheris consideredto be “average” (with a teacher effect of
zero) until there is sufficient student data to indicate otherwise. Zerorepresents the statewide average
teacher effect in this case. This method of estimation protects against false positives (teachers
incorrectly evaluated as effective) and false negatives (teachers incorrectly evaluated as ineffective),
particularlyin the case of teachers with few students.

From the computational perspective, the teacher gain can be defined as a linear combination of both
fixed effects and random effects and is estimated by the model using equation (9). The variance and
standard error can be found using equation (10).
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The teacher model provides estimated mean gains for each subject and grade. These quantities can be
described by linear combinations of the fixed and random effects and are found using the equations
mentioned above.
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Table 2: Encoding the Z matrix
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3.1.4 Where the MRM is Used in North Carolina

The MRM is used with the EOG testin Mathand in Reading for grades 3—8 to provide value-added
measures for districts, schools, and teachers in grades 4-8 in Math and grades 3-8 in Reading. The MRM
is alsoused with the K-2 assessment in Reading for K-2 to provide value-added measures for districts,
schools, and teachers in those grades.

The MRM methodology provides estimated measures of growth for up to three yearsin each
subject/grade/year for district, school, and teacher analyses provided that the minimum student
requirements are met. (Details are in Section 3.1.6.) For each subject, measures are alsogivenacross
grades, across years (up to three-year averages), and combined across grades and years.

For teachers, value-added measures for each EOG or K-2 subject/grade/year are computed (and
displayed on the EVAAS web application available at https://ncdpi.sas.com/).

More information about teacher composite measures can be found in Section 6.

3.1.5 Students Included in the Analysis

All students’ scores are included in these analyses if the scores can be used and do not meet any criteria
for exclusion outlined in Section 8. In other words, a complete history of every student’s Mathand
Reading results for the student’s cohort are incorporated into the models.

There are some exclusion rules based on policy decisions by NCDPI. For the MRM, student scores are
excluded from the analyses ifthe student is flagged as a First Year EL student, and students must meet
partial enrollment membership to be included in the analysis.

A student score could be excluded if it is considered an “outlier” in context with all the other scoresin a
reference group of scores from an individual student. This process determines whether the score is
"significantly different" from the other scores as indicated by a statistical analysis that compares each
score to the other scores. There are different business rules for the low outlier scores and the high
outlier scores. The outlier identification approach is more conservative when removing a very high
achieving score; a lower score would be considered an outlier before a higher score would be
considered an outlier. More details are provided in Section 8.

3.1.5.1 Districtand School Measures

3.1.5.1.1 Overall Measures of Student Growth for Districts and Schools

The analyses for schools and districts include all applicable student scores from EOG math and reading
tests fromthe cohort of students testing inthe most recent three years or all applicable student scores
from K-2 for early grade reporting.

3.1.5.1.2 Student Group MeasuresofStudent Growth for Districts and Schools

Student group value-added measures are included in North Carolina’s federal accountability system.
This includes the following student groups:

e AmericanIndian/Alaskan Native
e Asian/Pacific Islander
e Black(not Hispanic)

e Hispanic
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e Two or More Races

e White (not Hispanic)

e Economically Disadvantaged Students (EDS)
e EnglishLearners (EL)

e Students with Disabilities (SWD)

e Academically or Intellectually Gifted (AlG)

Students areidentified as members of a group based on a flag in the student record. Growth measures
are calculatedfor eachsubset of students for each district and school that meet the minimum
requirements of student data.

In eachstudent group value-added computation, the expectation of growthis defined the sameasin the
overall students’ analysis. In other words, the expectation of growthis based on all students.
Furthermore, the estimated covariance parameters are used from the overall students’ analysis when
calculating the value-added measures. These measures are provided using the EOG subjects with a
composite across Mathin grades 4—8 and Reading in grades 4-8.

3.1.5.2 Teacher Measures

The Teacher Value-Added reports use all available test scores for eachindividual student linked to a
teacher through the roster verification process unless a student or a student’s test score meets certain
criteria for exclusion.

3.1.6 Minimum Number of Students for Reporting

3.1.6.1 Districtand SchoolModels

To ensure that estimates are reliable, the minimum number of students required to report an estimated
mean NCE score for a school or district in a specific subject/grade/year is six.

To report an estimated NCE gain for a school or district in a specific subject/grade/year, there are
additional requirements:

e There must be atleast six students who are associated with the school or district in that
subject/grade/year.

e Thereisatleastone student atthe school or district who has a “simple gain,” which is based on
a valid test scorein the current year/grade as well as the prior year/grade in the same subject.

e Ofthose students who are associated with the school or district in the current year/grade, there
must be at least five students that have come from any single school for that prior school to be
used in the gain calculation.

3.1.6.2 Teacher Model

The teacher value-added model includes teachers who are linked to at least six students with a valid test
scorein the same subject and grade. To clarify, this means that the teachers are included in the analysis,
even if they do not receive a report due to the other requirements. This requirement does not consider
the percentage of instructional time the teacher spends with each student in a specific subject/grade.
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However, to receive a teacher value-added report for a particular year, subject, and grade, there are two
additional requirements. First, a teacher must have at least six Full Time Equivalent (FTE) studentsin a
specific subject/grade/year. The teacher’s number of FTE students is based on the number of students
linked to that teacher and the percentage of instructional time the teacher has for each student. For
example, if ateachertaught 10 students for 50% of their instructional time, then the teacher’s FTE
number of students would be five, and the teacher would not receive a Teacher Value-Added report. If
another teacher taught 12 students for 50% of their instructional time, then that teacher would have six
FTE students and would receive a Teacher Value-Added report. The instructional time attribution s
obtained from the student-teacher linkage data. This information is in the files sent to EVAAS described
in Section 2.

As the second requirement, the teacher must be linked to at least five students with prior test score
datain the same subject, and the test data might come from any prior grade as long as they are part of
the student’s regular cohort. (Ifa student repeats a grade, then the prior test data would not apply as
the student has started a new cohort.) One of these five students must have a “simple gain,” meaning
the same subject prior test score must come from the immediate prior year and prior grade. Students
are linked to a teacher based on the subject area taught and the assessment taken.

3.1.7 Hurricane Florence Adjustment

At the request of NCDPI, SAS conducted an analysis to assess whether students’ growth measureswere
relatedto their districts’ loss of instructional days due to Hurricane Florence in the 2018-19 school year.
This analysis indicated a need to adjust the growth model for EOG Reading in grade 3 to ensure validity
and comparability of results statewide. As a result, the growth model for EOG Readingin grade 3 makes
an adjustment to students’ Beginning-of-Year (BOY) test score based on the number of days missedand
waived due to the hurricane as well as students’ performance on other assessments, such as their prior
testscoresin grade 2 and their End-of-Year (EQY) test scorein grade 3. In technical terms, the growth
model uses linear regressionto establish a relationship among grade 2 test scores, grade 3 test scores,
and the number of days missed and waived. The BOY test scores are adjusted prior to usein the growth
model.

3.2 Univariate Response Model (URM)

Tests that are not necessarilyadministered tostudents in consecutive years, like the EOC and CTE tests,
require a different modeling approach from the MRM, and this modeling approach is called the
univariate response model (URM) or predictive model. This model is also used when previous test
performance is used to predict another test’s performance, such as the NCFE or ACT. The statistical
model canalso be classified as a linear mixed model and can be further described as an analysis of
covariance (ANCOVA) model. The URMiis a regression-based model, which measures the difference
between students’ predicted scores for a particular subject/year with their observed scores. The growth
expectationis met when students with a district/school/teacher made the same amount of growth as
students in the average district/school/teacher with the state for that same year/subject/grade. If not all
teachers were administering a particular test in the state, thenit would compare to the average of those
teachers with students taking that assessment, such as the case with many CTE assessments and some
NCFE assessments.

The key advantages of the URM approach can be summarized as follows:

o The model does not require students to have all predictors or the same set of predictors as long
as a student has at least three prior test scores in any subject/grade.
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e The model minimizes the influence of measurement error by using many prior tests foran
individual student. Analyzing all subjects simultaneously increases the precision of the
estimates.

o The model uses scores from multiple tests, including those on different scales.

e The model accommodates teaching scenarios where more than one teacher has responsibility
for a student’s learning in a specific subject/grade/year.

In North Carolina, URM value-added reporting is available for NCFE, CTE, ACT, SAT, PSAT, and all EOC
assessments for districts and schools. Teacher measures are alsoavailable for EOC, NCFE, and CTE
assessments.

3.2.1 URM at the Conceptual Level

The URMis run for each individual year, subject, and grade (if relevant). Consider all students who took
Biology in a given year. Those students are connected to their prior testing history (across grades,
subjects, andyears), and the relationship between the observed Biology scores with all prior test scores
is examined. Itis important to note that some prior test scores are going to have a greater relationship
to the scorein question than others. For example, it might be that prior science tests will have a greater
relationship with Biology than prior reading scores. However, the other scores still have a statistical
relationship.

Once that relationship has been defined, a predicted score can be calculated for eachindividual student
based on his or her own prior testing history. With each predicted score based on a student’s prior
testing history, this information canbe aggregatedtodistricts, schools, or teachers. The predicted score
can be thought of as the entering achievement of a student.

The measure of growthis a function of the difference between the observed (most recent)scaled scores
and predicted scaled scores of students associated with each district, school, or teacher. Ifstudents at a
school typically outperform their individual growth expectation, then that school will likely have a larger
value-added measure. Zerois defined as the average district, school, or teacherin terms of the average
growth, sothat if every student obtained their predicted score, a district, school, or teacher would likely
receive a value-added measure close to zero. A negative or zero value does not mean “zero growth”
since this is all relative to what was observed in the state (or pool) that year.

3.2.2 Technical Description of the District, School, and Teacher Models

The URM has similar models for district and school and a slightly different model for teachers that
allows multiple teachers toshareinstructional responsibility. The approachis described briefly below,
with more details following.

e The scoreto be predicted serves as the response variable (y, the dependent variable).

e The covariates (xs, predictor variables, explanatoryvariables, independent variables) are scores
on tests the student has already taken.

e The categoricalvariable (class variable, factor) are the teacher(s) from whom the student
received instructionin the subject/grade/year of the response variable (y).

Algebraically, the model can be represented as follows for the it* student when thereis no team
teaching.
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Vi =ty t a+ Bi(xp — )+ B (i —pp) + 0+ g (14)

In the case of team teaching, the single q; is replaced by multiple as, each multiplied by an appropriate
weight, similar to the way this is handled in the teacher MRM in equation (13). The u terms are means
for the response and the predictor variables. a; is the teacher effect for the j ™ teacher, the teacher
who claimed responsibility for the i student. The 8 terms are regression coefficients. Predictions to
the response variable are made by using this equation with estimates for the unknown parameters (us,
Bs, sometimes q;). The parameter estimates (denoted with “hats,” e.g., i, ,[?) are obtained using all
students that have an observed value for the specific response and have three predictor scores. The
resulting prediction equation for the i student is as follows:

9= fy+ Bl — A+ Brlrip— fy) + - (15)

Two difficulties must be addressedin order to implement the prediction model. First, not all students
will have the same set of predictor variables due to missing test scores. Second, the estimated
parameters are pooled-within-teacher estimates. The strategy for dealing with missing predictors is to
estimate the joint covariance matrix (call it C) of the response and the predictors. Let C be partitioned
into response (y) and predictor (x) partitions, that is:

C Cyy
C= [ yy Cy ] L
Cxy Crx e

C in equation (16) is not the same as C in equation (4). This matrixis estimated using an Expectation
Maximization (EM) algorithm for estimating covariance matrices inthe presence of missing data, suchas
the one provided in the SAS/STAT® MI Procedure, but modified to accommodate the nesting of students
within teachers. Only students who had a test score for the response variable in the most recent year
and who had at least three predictor variables are included in the estimation. Givensuch a matrix, the
vector of estimated regression coefficients for the projection equation (15) can be obtained as:

B = CrxCry (17)
This allows one to use whichever predictors a particular student has to get that student’s projected y-
value (¥;). Specifically, the C,., matrix used to obtain the regression coefficients for a particular student
is that subset of the overall C matrixthat corresponds to the set of predictors for which this student has
scores.

The prediction equation also requires estimated meanscores for the response and for each predictor
(the i terms in the prediction equation). These are not simply the grand mean scores. It can be shown
thatin an ANCOVA, if the parameters are defined such that the estimated teacher effects should sumto
zero (that is, the teacher effect for the “average teacher” is zero), then the appropriate means are the
means of the teacher means. Teacher means are obtained from the EM algorithm, mentioned above,
which takes into account missing data. The overall means ({i terms) are then obtained as the simple
average of the teacher means.

Once the parameter estimates for the prediction equation have been obtained, predictions can be made
for any student with any set of predictor values as long as that student has a minimum of three prior
test scores.
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Vi = Ay + B1(xis — i)+ Boloip — fip) + -+ (18)

The ¥; termis nothing more than a composite of all the student’s past scores. It is a one-number
summary of the student’s level of achievement prior to the current year. The different prior test scores
making up this composite are given different weights (by the regression coefficients, the fs) in order to
maximize its correlation with the response variable. Thus, a different composite would be used when
the response variable is math thanwhen it is reading for example. Note that the &; termis not included
in the equation. Again, this is because ¥; represents prior achievement before the effect of the current
district, school, or teacher. Toavoid bias due to measurement error in the predictors, composites are
obtained only for students who have at least three prior test scores.

The second stepin the URM s to estimate the teacher effects (a;) using the following ANCOVA model:

Vi=Yot nyita+ € (19)

In the URM model, the effects (aj) are considered to be random effects. Consequently, the djs are
obtained by shrinkage estimation (empirical Bayes). The regression coefficients for the ANCOVA model
aregiven by the ys.

3.2.3 Students Included in the Analysis

3.2.3.1.1 OverallMeasures of Student Growth for Districts, Schools, and Teachers

In order for a student’s score tobe used in the district or school analysis for a particular
subject/grade/year, the student must have at least three valid predictor scores that can be used in the
analysis, all of which cannot be deemed outliers. These scores can be from any year, subject, and grade
used in the analysis. It will include subjects other than the subject being predicted. The required three
predictor scores are needed to sufficiently dampen the error of measurement in the tests to provide a
reliable measure. Ifa student does not meet the three score minimum, then the student is excluded
from the analyses. Itis important to note not all students have to have the same three prior test scores.
They only have to have some subset of three that were used in the analysis.

There are some exclusion rules based on policy decisions by NCDPI. For the URM, student scores are
excluded from the analyses ifthe student is flagged as a First Year EL student or if the student does not
meet partial enrollment membership for EOC, NCFE and CTE assessments. For the Math 3 value-added
reporting, there are two sets of school reports: one set that excludes students as described for EOCs and
another set that further excludes students based on a School Accountability Growth flag for EOC Math 3.
This flag indicates whether the student was previously used in School Accountability Growth for Math 1
and should therefore be excluded from School Accountability Growth for Math 3. Note that Teacher
reports based on Math 3 do not exclude students based on the School Accountability Growth flag. There
are no membership rules used to include or exclude students in the SAT, PSAT, and ACT analyses.

A student score could be excluded if it is considered an “outlier” in context with all of the other scores in
a reference group of scores from anindividual student. Is the score "significantly different" from the
other scores as indicated by a statistical analysis that compares eachscore tothe other scores? There
are different business rules for the low outlier scores andthe high outlier scores. This approach is more
conservative when removing a very high achieving score, and a lower score would be considered an
outlier before a higher score would be considered an outlier. More details are provided in Section 8.
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3.2.3.1.2 Student Group Measuresof Student Growth for Districts and Schools

Student group value-added measures are included in North Carolina’s federal accountability system.
This includes the following student groups:

e AmericanIndian/Alaskan Native

e Asian/Pacific Islander

e Black(not Hispanic)

e Hispanic

e Two or More Races

e White (not Hispanic)

e Economically Disadvantaged Students (EDS)
e EnglishLearners (EL)

e Students with Disabilities (SWD)

e Academically or Intellectually Gifted (AlG)

Students are identified as members of a group based on a flag in the student record. Growth measures
are calculated for eachsubset of students for each district and school that meet the minimum
requirements of student data.

In each student group value-added computation, the expectation of growthis defined the sameasin the
overall students’ analysis. In other words, the expectation of growthis based on all students.
Furthermore, the estimated covariance parameters are used from the overall students’ analysis when
calculating the value-added measures. These measures are provided using the EOC subjects with a
composite across Math 1, Math 3, and English II. The Math 3 student group reporting includes only
students who meet the accountability business rules described in the second set of reports describedin
Section 3.2.3.1.1.

3.2.4 Minimum Number of Students for Reporting

To receive an overall measure of student growth, a district or school must have at least 10 students in
that year, subject, and grade that have the required three prior test scores neededto obtain a predicted
scorein that year, subject, and grade and have met all other requirements to be included. Student
group reporting alsorequires 10 students to be included in the EVAAS web reporting.

For teacher reporting, there must be 10 students meeting criteria for inclusion in that year, subject, and
grade that have the required three prior test scores neededto obtain a predicted scorein that year,
subject, and grade. Again, in order to receive a Teacher Value-Added report for a particular year,
subject, and grade, a teacher must have at least six Full Time Equivalent (FTE) students in a specific
subject/grade/year as describedin Section 3.1.6.2.
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4 Growth Expectation

The simple definition of growth was describedin the introduction as follows:

e Growth= current achievement/current results comparedto all prior achievement/prior results
with achievement being measured by a quality assessment, such as the EOG tests

Typically, the “expected” growthis set at zero, suchthat positive gains or effects are evidence that
students made more thanthe expected growth, and negative gains or effects are evidence students
made Jess than the expected growth.

However, the precise definition of “expected growth” varies by model, and this section provides more
detail.

4.1 Intra-Year Growth Expectation

4.1.1 Description

e The actual definitions in each model are slightly different, but the concept can be considered as
the average amount of growthseenacross the stateina statewide implementation.

e Using the URM model, the definition of the expectation is that students with a district, school,
or teacher made the same amount of growth as students with the average district, school, or
teacherin the state for that same year/subject/grade. If not all students are taking an
assessmentinthe state, thenit might be a subset.

e Using the MRM model, the definition of this type of expectation of growth is that students
maintained the same relative position with respect to the statewide student achievement from
one year to the nextin the same subject area. For example, if students’ achievement was at the
50th NCE in 2018 grade 4 Math, based on the 2018 grade 4 Math statewide distribution of
student achievement, and their achievement is at the 50" NCE in 2019 grade 5 Math, based on
the 2019 grade 5 Math statewide distribution of student achievement, then their estimated gain
is 0.0 NCEs.

e With this approach, the value-added measures tendto be centered on the growth expectation
every year, with approximately half of the district/school/teacher estimates above zeroand
approximately half of the district/school/teacher estimates below zero. However, it should be
noted that there is not a set distribution of the value-added measures. Being centered on the
growth expectation does not mean half of the measures would be in the positive levels and half
would be in the negative levels since many value-added measures are indistinguishable from the
expectation when considering the statistical certainly around that measure. More details can be
found in Section 5.

4.1.2 lllustrated Example

Figure 3 below provides a simplified example of how growthis calculated with an intra-year approach
when the state achievementincreases. The figure has four graphs, each of which plot the NCE
distribution of scale scores for a given year and grade. The scale scores are used to illustrate an example
in the graphics below and do not represent actual scale scores in North Carolina. Inthis example, the
figure shows how the gain is calculated for a group of grade 4 students in Year 1 as they become grade 5
studentsin Year 2. InYear 1, our grade 4 students score, on average, 420 scale score points on the test,
which corresponds to the 50t NCE (similar to the 50t percentile). In Year 2, the students score, on
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average, 434 scale score points on the test, which corresponds to a 50" NCE based on the grade 5
distribution of scoresin Year 2. The grade 5 distribution of scale scores in Year 2 was higher than the
grade 5 distribution of scale scores in Year 1, which is why the lower right-hand graph is shifted slightly
to the right. The blue line shows what is required for students to make expected growth, which would
be to maintain their position atthe 50t NCE in grade 4 in Year 1 as they become grade 5 students in
Year 2. The growth measure for these students is Year 2 NCE— Year 1 NCE, which would be 50 - 50 =0.
Similarly, if a group of students started at the 35t NCE, the expectation is that they would maintain that
35t NCE.

The actual gain calculations are much more robust than what is presented here. As described in the
previous section, the models canaddress students with missing data, team teaching, and all available
testing history.

Figure 3: Intra-year approachexample

4™ Grade 5t Grade

Year 1

Scale Score: 420 Scale Score: 430
NCE: 50 MNCE: 50

Year 2

— I —
Scale Score: 422 /' Scale Score: 434 /

Intra year NCE: 50 Intra year NCE: 50

4.2 Defining the Expectation of Growth During an Assessment Change

During the change of assessments, the scales from one year to the next will be completely different
from one another. This does not present any particular changes withthe URM methodology because all
predictors in this approach are already on different scales from the response variable, so the transition
is no different from a scaling perspective. Of course, there will be a need for the predictors to be
adequately related to the response variable of the new assessment, but that typicallyis not anissue.

With the intra-year growth expectationin the MRM, the scales from one year to the next can be
completely different from one another. This method converts any scale to a relative position and can be
used through an assessment change.

Over the past 20 years, EVAASreporting has accommodated several different changes in testing regimes
and used several tests for the MRM without a breakin reporting, such as the change in assessmentsin
North Carolinain 2012.
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5 Using Standard Errors to Create Levels of Certainty and
Define Effectiveness

In all value-added reporting, EVAAS includes the value-added estimate (growth measure) and its
associated standarderror. This section provides more information about standard error and how it is
used to define effectiveness.

5.1 Using Standard Errors Derived from the Models

As described in the modeling approaches section, each model provides an estimate of growth for a
district, school, or teacherin a particular subject/grade/year as well as that estimate’s standard error.
The standard erroris a measure of the quantity and quality of student data included in the estimate,
such as the number of students andthe occurrence of missing data for those students. Because
measurement error is inherent in any growth or value-added model, the standarderroris a critical part
of the reporting. Taken together, the estimate and standard error provide educators and policymakers
with critical information about the certaintythat students in a district, school, or classroom are making
decidedly more or less than the expected growth. Taking the standard error into account is particularly
important for reducing the risk of misclassification (for example, identifying a teacher as ineffective
when he or sheis truly effective) for high-stakes usage of value-added reporting.

Furthermore, because the MRM and URM models use robust statistical approaches as wellas maximize
the use of students’ testing history, they can provide value-added estimates for relatively small numbers
of students. This allows more teachers, schools, and districts to receive their own value-added
estimates, whichis particularly useful to rural communities or small schools. As describedin Section 3,
there are minimum requirements of students per tested subject/grade/year depending on the model,
which are relatively small.

The standard error also takes into account that, even among teachers with the same number of
students, teachers might have students with very different amounts of prior testing history. Due to this
variation, the standarderrors in a given subject/grade/year could vary significantlyamong teachers,
depending on the available datathat is associated with their students, and it is another important
protection for districts, schools, and teachers toincorporate standard errors into value-added reporting.

5.2 Defining Effectiveness in Terms of Standard Errors

Eachvalue-added estimate has anassociated standard error, whichis a measure of uncertainty that
depends on the quantity and quality of student data associated with that value-added estimate.

The standarderror can help indicate whether a value-added estimate is significantly different from the
growthstandard. Inthe reporting, thereis a need to display the values used to determine these
categories. This value is typically referred to as the growthindex and is simply the value-added measure
divided by its standard error. Since the expectation of growthis zero, this measures the certainty about
the difference of a growth measure to zero.

The chart below provides the color-coding, definitions, and interpretation for the Value-Added reports
for teachers, which are similar to those provided for districts and schools.
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Value-Added Growth Measure Index* Interpretation

Color and Compared to the Growth

Teacher Standard

Measure

Designation

Exceeds At least 2 standard errors | 2.00 or greater Significant evidence that

Expected above students made more

Growth progress than the Growth
Standard.

\ESE S Between 2 standard Between -2.00 Evidence that students

Growth errors above and 2 and 2.00 made progress similar to

standard errors below the Growth Standard.

DI\ [\ [SEI8 More than 2 standard Less than -2.00 Significant evidence that

Expected errors below students made less

Growth progress than the Growth
Standard.

NOTE: When anindexfalls exactly on the boundarybetween two colors, the higher growth coloris assigned.

*These rules for effectiveness levels and growth colorsapply to allindex values in the district, school, and
teacher reports.

The distribution of these categories canvary by year/subject/grade. There are many reasons this is
possible, but overall, these categories are based on the amount of evidence that shows whether
students make more or less than the expected growth.

5.3 Roundingand Truncating Rules

As described in the previous section, the effectiveness categories are based on the value of the growth
index. In determining the growth index, rounding and truncating rules are applied only in the final step
of the calculation. Thus, the calculation of the growth index uses unrounded values for the value-added
measures and standard errors. After the growth index has been created but before the categories are
determined, the index values are rounded or truncated by taking the maximum value of the rounded or
truncatedindex value out to two decimal places. This business rule yields the highest category of
effectiveness given any type of rounding or truncating situation. For example, if the index score was a
1.995, then rounding would provide a higher category. If the score was a-2.005, then truncating would
provide a higher category. In practical terms, this impacts only a small number of measures.

When value-added measures are alsocombined to form composites, as describedin the next section,
the rounding or truncating occurs after the final index is calculated for that combined measure.
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6 EVAAS Composite Calculations

6.1 Introduction

This section describes how the policy decisions by NCDPI are implemented in the calculation of
composites for teachers and schools in the tested subjects and/or grades.

The key policy decisions for teacher composites can be summarized as follows:

e This compositeis called the Student Growth Measure, andit includes all available growth
measures associated with teachers whoreceived value-added reports within the past three
consecutive reporting years.

e For each reporting year, a single-year composite is calculated by weighing each
subject/grade/year (for EOG, K-2 and NCFE) and each subject/year (for EOC and CTE) according
to the effective number of students’ scores includedin the value-added measure.

e The compositeis then a simple average with equal weighting given to each single-year
composite.

The key policy decisions for school composites can be summarized as follows:

e A composite is calculated across subjects and grades using one year of growth measures for
schools.

e There aretwo types of school composites. The first is the School Accountability Growth (SAG)
composite thatincludes only EOC and EOG subjects and grades. Biology is not included in SAG.
There is a second composite, Educator Effective Growth (EEG), which uses more subjects and
grades associated with a school since it alsoincludes K-2, NCFE, and CTEs.

e BoththeSAG and EEG composites weigh each subject/grade/year (for EOG, K-2 and NCFE) and
each subject/year (for EOC and CTE) according to the number of scores included in the value-
added measures.

A composite combines value-added measures from different tests, subjects,and grades. The following
sections show how a Student Growth Measure composite is calculatedfor a sample teacher. Although
we present a teacher example, the process for school composite calculations is the same.

6.2 Teacher Composites
The key steps for determining a teacher’s SGM composite index are as follows:

1. Calculate MRM-based composite gain, standard error, and index across grades and subjects.
2. Calculate URM-based composite index across subjects.
3. Calculate composite index using both the MRM-and URM-based composite indices.

If ateacher does not have value-added measures from both the MRM and URM, thenthe SGM
composite index would be based on the model for which the teacher does have reporting. The following
sections illustrate this process using value-added measures from a sample teacher, which are provided
below.
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Table 3: Sample teachervalue-addedinformation

Year Subject Grade Value-Added Standard Error Number of FTE
Measure Students
2019 EOG 8 -0.30 1.20 65
Reading
2019 EOG Math 8 3.80 1.50 70
2019 Math1 8 11.75 6.20 20

6.2.1 Calculate MRM-Based Composite Gain Across Subjects

All value-added measures fromthe MRM are in the same scale (Normal Curve Equivalents), so the
composite gainacross subjects is a simple average gain of all applicable gains, each weighted according
to the proportion of students linked to that gain. For our sample teacher, the total number of FTE
students affiliated with MRM value-added measures is 65 + 70, or 135. The EOG Reading grade 8 value-
added measure would be weighted at 65/135 and the EOG Math grade 8 value-added measure would
be weighted at 70/135.

More specifically, the sample teacher would have an MRM-based composite gain as follows:

MRM C Gain = 65R d 7OM h—(65> 0.30 (7())380—183 (20)
omp Gain = To-Rea 8+135 athg = 135 (—0.30) + 135(. )=1.

6.2.2 Calculate MRM-Based Standard Error Across Subjects

6.2.2.1 TechnicalBackground onStandardErrors

As a reminder, the use of the word “error” does not indicate a mistake. Rather, value-added models
produce estimates. That is, the value-added gains in the above tables are estimates, based on student
test score data, of the teacher’s true value-added effectiveness. Instatistical terminology a “standard
error” is a measure of the uncertaintyin the estimate, providing a means to determine whether an
estimate is decidedly above or below the growth expectation. Standard errors can, and should, also be
provided for the composite gains that have been calculated, as shown above, from a teacher’s value-
added gain estimate.

Statistical formulas are often more conveniently expressed as variances, and this is the square of the
standard error. Standard errors of composites can be calculated using variations of the general formula
shown below. To maintain the generality of the formula, the individual estimates inthe formula (think of
them as value-added-gains)are simply called X, Y, and Z. Ifthere were more than or fewer than three
estimates, the formula would change accordingly. As EOG composites use proportional weighting
according to the number of students linked to each value-added gain, each estimate is multiplied by a
different weight - a, b, or c.

Var(aX + bY +cZ) = a?Var(X) + b?Var(Y) + c?Var(2)

21
+2ab Cov(X,Y) + 2ac Cov(X, Z) + 2bc Cov(Y,Z) 1)
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Covariance, denoted by Cov, is a measure of the relationship betweentwo variables. Itis a function of a
more familiar measure of relationship, the correlation coefficient. Specifically, the term Cov (X,Y) is
calculated as follows:

Cov(X,Y) = Correlation(X,Y)y/Var(X)/Var(Y) (22)

The value of the correlation ranges from -1 to +1, and these values have the following meanings:
e Avalue of zeroindicates no relationship.
e A positive value indicates a positive relationship, or Y tends to be larger when X is larger.
e A negativevalue indicates a negative relationship, or Y tends to be smaller when X is larger.

Two variables that are unrelated have a correlation, and covariance, of zero. Such variables are said to
be statisticallyindependent. If the X and Y values have a positive relationship, then the covariance will
alsobe positive. As a generalrule, two value-added gain estimates are statistically independent if they
are based on completely different sets of students. For our sample teacher’s MRM composite gain, the
relationship will generally be positive, and this means that the MRM-based composite standard error is
larger than it would be assuming independence.

6.2.2.2 lllustration of MRM-Based Standard Error for a Sample Teacher

For the sample teacher, it cannot be assumedthat the gains in the composite are independent because
it is likely that some of the same students are represented in different value-added gains, suchas grade
8 Mathin 2019 and grade 8 Reading in 2019.

However, to demonstrate the impact of the covariance terms on the standarderror, it is useful to
calculate the standarderror using (inappropriately) the assumption of independence. Using the MRM-
based FtE weightings and standarderrors reportedin Table 3 and assuming totalindependence, the
standard error would then be as follows:

2 2

65 70
= —_— 2 —_ 2
MRM Comp SE (135> (SE Readyg) +<135) (SE Mathg)
65\’ 70 \2 (23)
= R 2 - 2 —
(135) (1.20) +(135) (150)2 = 0.97

At the other extreme, if the correlation between each pair of value-added gains had its maximum value
of +1, the standard error would be as follows using the MRM-based FtE weightings and standarderrors
from Table 3:

31



MRM Comp SE

2

= \/ (%)2 (SE Readg)? + (%) (SE Mathg)? + 2 (%55) (%)(SE Readg)(SE Maths) o)

_ ](%55)2 (1.20)% + (%)2 (1.50)% + 2 (%55) (%)(1.20)(1.50) - 1.36

The actual standard error will fall somewhere between the two extreme values of 0.97 and 1.36 with the
specific value depending on the values of the correlations between pairs of value-added gains. The
magnitude of each correlation depends on the extent to which the same students are in both estimates
for any two subject/grade/year estimates. For example, if the 2019 grade 8 Mathand 2019 grade 8
Reading classes had no students in common, then their correlation would be zero. If the 2019 grade 8
Mathand 2019 grade 8 Reading classes contained many of the same students, there would be a positive
correlation. However, even if those two classes had exactly the same students, the correlation would
likely be considerably less than +1. The actual correlations and covariances themselves are obtained as
part of the EVAAS modeling process using equation (10) from Section 3.1.3. It would be impossible to
obtain them outside of the modeling process. This process uses all of the information about which
students are in which subject/grade/year for eachteacher.

Although this approach uses a more sophisticated technique, it more accurately captures the potential
relationships among teacher estimates and student scores. This will lead to the appropriate standard
error thatis typically between these two extremes, whichare 0.97 and 1.36in this particular example. In
general, the standard error of the composite gain will vary depending on the standarderrors of the
value-added gains and the correlations between pairs of value-added gains. The standard errors of the
individual value-added gains will depend on the quantity and quality of the data that went into the gain,
such as the number of students and the amount of missing data all of those students have, will
contribute to the magnitude of the standard error.

6.2.3 Calculate MRM-Based Composite Index Across Subjects

The final stepis to calculate the MRM-based composite index, which is the composite value-added gain
divided by its standard error. The composite index for the sample teacheris 1.83 divided by a number
between 0.97 and 1.36. The actual MRM-based standard error is determined using all of the information
described above, which includes information beyond just our one sample teacher. For simplicity’s sake,
let’s assume that the actual standard error in this example was 1.15, and the index for this teacher
would be calculated as follows:

MRM Comp Gain  1.83
MRM Comp SE ~ 1.15

MRM Comp Index = 1.59 (25)

Although some of the values in the example were rounded for display purposes, the actual rounding or
truncating occurs only after all of the measures have been combined as describedin Section 5.3.

6.2.4 Calculate URM-Based Index Across Subjects

For our sample teacher, thereis only one available URM value-added measure. This means that the
reported value-added index for that subject will be the same that is calculated for the URM-based
composite index.
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Math1VAMeasure 11.75

= = 26
Math1 SE 6.20 1.90 (26)

URM Comp Index =

However, should a teacher have more than one value-added measure based on the URM, then the
composite index would be calculated by first calculating index values for each subject and then
combining the weighting by the effective number of students. The standard error of this combined index
must assume independence since the URM measures are done in separate models for each year and
subject

6.2.5 Calculate the Combined MRM and URM Composite Index Across Subjects

The two composite indices from the MRM and URM are then weighted according to the number of
students linked to each model to determine the combined composite index. Our sample teacher has 155
students, of which 135 are linked to the MRM and 20 to the URM, so the combined composite index
would be calculated as follows using these weightings, the MRM-based composite index across subjects,
and the URM-based index across subjects:

135
155

20

155)(1.90) — 1.62 (27)

Unadjusted Combined Comp Index = ( )(1.59) + (

This combined index is not an actualindex itself until it is adjusted to accommodate for the fact thatit is
based on multiple pieces of evidence together. Anindex by definition has a standarderror of 1, but this
unadjusted value (1.62) does not have a standard error of 1. The next stepis to calculate the new
standard error and divide the combined composite index found above by it. This new, adjusted
composite index will be the final index with a standarderror of 1. The standard error can be found given
the standard formula above and the fact that each index has a standard error of 1. Independence is

assumedsince these are done outside of the models. In this example, the standard error would be as
follows:

Final Combined Comp SE = (135)2(1)2 (20)2(1)2—088 (28)
tinat Comopined Comp = 15s + 15c = 0.

Therefore, the final combined composite index value is 1.62 divided by 0.88 or 1.85. This is the value in
the teacher’s SGM report. If this teacher had three consecutive years of growth measures, theneach
yearly composite is estimated by the process outlined above, and the teacher’s SGMis a simple average
of the three single-year composites.

6.3 School Composites

The composites calculated for schools are done in the exact same way as teachers described in the
sectionabove basedon the applicable growth measures.
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7 EVAAS Projection Model

In addition to providing value-added modeling, EVAAS provides projected scores for individual students
on tests the students have not yet taken. These tests include all assessments that are usedinvalue-
added models in the state of North Carolina. These projections canbe usedto predict a student’s future
success or lack thereof. As such, this projection information canbe used as an early warning indicator to
guide counseling and intervention to increase students’ likelihood of future success.

Currently, the following projections are available to educators in North Carolina:
e EOG Readingin grades 3-8
e EOG Mathgrades 4-8
e EOG Science ingrades5and 8
e EOC Math 1, Math 3, Biology |, and English Il
e ACT Composite, English, Math, Reading, and Science
e SAT Composite, Evidence-Based Reading and Writing, and Math
e PSAT Composite, Evidence-Based Reading and Writing, and Math
e CTEinvarious subjects
e NCFE in various subjects
e APin various subjects

Projections are made one or two grades above the last tested grade for EOG Reading and Math and to
the next tested subject/grade or course for EOG Science, EOC, CTE, NCFE, ACT, SAT, PSAT, and AP.

The statistical model that is used as the basis for the projections is, in traditional terminology, an
analysis of covariance (ANCOVA) model. This model is the same statistical modelusedin the URM
methodology applied at the school level describedin Section 3.2.2. Inthis model, the projected score
serves as the response variable (y), the covariates (xs)are scores on tests the student has already taken,
and the categorical variable is the school at which the student received instructionin the
subject/grade/year of the response variable (y). Algebraically, the model can be represented as follows
for the i*" student.

Vi =My + i+ Bi1(xg —p) + Bo(xip—p) + -+ € (29)

The u terms are means for the response and the predictor variables. a; is the school effect for the jth

school, the school attended by the it" student. The 8 terms are regression coefficients. Projections to
the future are made by using this equation with estimates for the unknown parameters («s, Ss,

sometimes a]-). The parameter estimates (denoted with “hats,” e.g., 4, 3) are obtained using the most
current data for which response values are available. The resulting projection equation for the it"
studentis:

Vi = Ayt @+ P10y — ) + Bl — ) + -+ € (30)

The reasonfor the “t” before the &jterm is that, since the projection is to a future time, the school that
the student will attend is unknown. Therefore, this termis usually omitted from the projections. This is
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equivalent to setting &; to zero, thatis, to assuming that the student encounters the “average schooling
experience” in the future.

Two difficulties must be addressedin order to implement the projections. First, not all students will have
the same set of predictor variables due to missing test scores. Second, because of the school effectin
the model, the regression coefficients must be “pooled-within-school” regression coefficients. The
strategy for dealing with these difficulties is exactlythe same as describedin Section 3.2.2 using
equations (16) and (17) and will not be repeated here.

Once the parameter estimates for the projection equation have been obtained, projections can be made
for any student with any set of predictor values. However, to protect against bias due to measurement
error in the predictors, projections are made only for students who have at least three available
predictor scores. Inaddition to the projected scoreitself, the standard error of the projection is
calculated (SE (¥;)). Given a projected score and its standard error, it is possible to calculate the
probability that a student will reach some specified benchmark of interest (b). Examples are the
probability of scoring at level 3 on a future EOG test, or the probability of scoring sufficiently well on a
college entrance examto gain admittance into a desired program.

Projections are made to levels 2—5for the EOG and EOC tests, tothe proficient level on the CTE tests
only for students enrolled in those courses, the 50t and 80" percentile for the NCFE assessments,and
to a level of 3 or higher, 4 or higher, or 5 on the AP assessments. Using college readiness assessments,
projections are made to US and state averages for PSAT, ACT, and SAT and to the average ACT and SAT
scores for incoming NC State University freshmen at various NCSU colleges.

The probability is calculated as the area above the benchmark cutoff score using a normal distribution
with its mean equal to the projected score and its standard deviation equal to the standard error of the
projected score as described below. @ represents the standard normal cumulative distribution function.

Prob(§; = b) = @ (u) (31)
‘T SE(@;)
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8 Data Quality and Pre-Analytic Data Processing

This section provides an overview of the steps takento ensure sufficient data quality and processing for
reliable value-added analysis.

8.1 Data Quality

Data are provided eachyear to EVAAS consisting of student test data and file formats. These data are
checked each year to be incorporated into a longitudinal database that links students over time. Student
test data and demographic data are checked for consistency year to year to ensure that the appropriate
data areassignedto each student. Student records are matched over time using all data provided by the
state, andteacher records are matched over time using the Unique ID and teacher’s name.

8.2 Checks of Scaled Score Distributions

The statewide distribution of scale scores is examined each year to determine whether they are
appropriate to use in a longitudinally linked analysis. Scales must meet the three requirements listed in
Section 2.1 and described again below to be used in all types of analysis done within EVAAS. Stretchand
reliability are checked every year using the statewide distribution of scale scores sent each year before
the full test datais given.

8.2.1 Stretch

Stretchindicates whether the scaling of the test permits student growthto be measured for either very
low- or very high-achieving students. Atest “ceiling” or “floor” inhibits the ability to assess growth for
students who would have otherwise scored higher or lower than the test allowed. There must be
enough test scores at the high or low end of achievement for measurable differences to be observed.
Stretch can be determined by the percentage of students who score near the minimum or the maximum
level for eachassessment.Ifalarge percentage of students scored at the maximum in one grade
compared to the prior grade, thenit might seem that these students had negative growth at the very
top of the scale. However, this is likely due to the artificial ceiling of the assessment. Percentages for all
North Carolina state assessments ultimately used in calculating growth measures are suitable for value-
added analysis; this means that the state tests have adequate stretchto measure value-added even in
situations where the group of students are very high or low achieving.

8.2.2 Relevance

Relevanceindicates whether the test has sufficient alignment withthe state standards. The requirement
that tested material will correlate with standards ifthe assessmentsare designedtoassess what
students are expected to know and be able to do at each grade level. This is how state tests are
designedand is monitored by NCDPI and their psychometricians.

8.2.3 Reliability

Reliability can be viewed in a few different ways for assessments. Psychometricians view reliability as
the idea that a student would receive similar scores if they took the assessment multiple times. This type
of reliability is important for most any use of standardized assessments.

8.3 Data Quality Business Rules

More information about pre-analytic processing for student test scores is detailed below.
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8.3.1 Missing Grade Levels

In North Carolina, the grade level that is used in the analyses and reporting is the tested grade, not the
enrolled grade. Ifa grade level is missing on any K-2 or EOG tests, thenthese records will be excluded
from all analyses. The grade is required to include a student’s score into the appropriate part of the
models, and it would need to be known if the score was to be converted into an NCE.

8.3.2 Duplicate (Same) Scores

If a student has a duplicate score for a particular subject and tested grade in a given testing period in a
given school, then the extra score will be excluded from the analysis and reporting.

8.3.3 Students with Missing Districts or Schools for Some Scores but Not Others

If a student has a score with a missing district or school for a particular subject and grade in a given
testing period, then the score that has a district and/or school will be included over the score that has
the missing data. This rule applies individually to specific subject/grade/years.

8.3.4 Students with Multiple (Different) Scores in the Same Testing Administration

If a student has multiple scores in the same period for a particular subject and grade and the test scores
are not the same, then those scores will be excluded from the analysis. If duplicate scores for a
particular subject and tested grade in a given testing period are at different schools, then both of these
scores will be excluded from the analysis. The highest composite combination of SAT subjects is used for
SAT value-added and student college readiness projections.

8.3.5 Students with Multiple Grade Levelsin the Same Subject in the Same Year

A student should not have different tested grade levels in the same subject in the same year. If that is
the case, thenthe student’s records are checked to see if the data for two separate students were
inadvertently combined. If this is the case, thenstudent data are adjusted so that each unique student is
associated with only the appropriate scores. Ifthe scores appear toall be associated witha single
unigue student, then scores that appear inconsistent are excluded from the analysis.

8.3.6 Students with Records That Have Unexpected Grade Level Changes

If a student skips more than one grade level (e.g., moves from sixth grade last year to ninth grade this
year) or is moved back by one grade or more (i.e. moves from fourth grade last year to third grade this
year) in the same subject, then the student’s records are examined to determine whether two separate
students were inadvertently combined. If this is the case, thenthe student datais adjustedso that each
unique student is associated with only the appropriate scores. These scores are removed from the
analysis if it is the same student.

8.3.7 Students with Records at Multiple Schools in the Same Test Period

If a student is tested at two different schools in a given testing period, then the student’s records are
examined to determine whether two separate students were inadvertently combined. If this is the case,
then the student datais adjusted so that each unique studentis associated only with the appropriate
scores. When students have valid scores at multiple schools in different subjects, all valid scores are
used at the appropriate school.
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8.3.8 Outliers

8.3.8.1 ConceptualExplanation

Student assessment scoresare checked each year to determine whether any scores are “outliers” in
context with all the other scores in a reference group of scores from anindividual student. This is one of
the protections in place with EVAAS analyses and reporting. This is a conservative process by which
scores are statistically examined todetermine if a scoreis considered an outlier. Is the score
"significantly different" from the other scores as indicated by a statistical analysis that compares each
scoreto the other scores? There are different business rules for the low outlier scores andthe high
outlier scores. This approach is more conservative when removing a very high achieving score; a lower
score would be considered an outlier before a higher score would be considered an outlier. Again, this is
a protection with EVAAS.

8.3.8.2 Technical Explanation

Student assessment scores are checked each year to determine whether they are outliers in context
with the other scores in a reference group of scores from the individual student. These reference scores
are weighted differently depending on proximity in time to the score in question. Scores are checked for
outliers using related subjects as the reference group. For example, when searching for outliers for Math
test scores, Math subjects (EOG and EOC assessments) are examined simultaneously during outlier
identification for the state assessments,and anyscores that appearinconsistent, given the other scores
for the student, are flagged. Outlier identification for college readiness assessments use all available
college readiness data alongside state assessments inthe respective subject area (e.g., Math subjects
with EOC, EOG, and PSAT tests might be usedto identify outliers with SAT or ACT). Furthermore, K-2
data are used solely for outlier identification with K-2. Lastly, CTE and AP assessments do not undergo
outlier identification due to the various test taking patterns inherent with CTE and AP and the fact that
these assessments have less uniformity in administration across the state than other statewide
assessments. Scores are flaggedina conservative wayto avoid excluding any student scores that should
not be excluded. Scores canbe flagged as either high or low outliers. Once an outlier is discovered, that
outlier will not be used in the analysis, but it will be displayed on the student testing history on EVAAS
web application.

This process is part of a data quality procedure to ensure that no scores are used if they were in fact
errors in the data, and the approach for flagging a student score as an outlier is fairly conservative.

Considerations included in outlier detection are:
e |sthe scorein the tails of the distribution of scores? Is the score very high or low achieving?

o Isthe score “significantly different” from the other scores as indicated by a statistical analysis
that compares each score to the other scores?

e Isthe scorealso “practically different” from the other scores? Statistical significance can
sometimes be associated with numerical differences that are too small to be meaningful.

e Are thereenough scores to make a meaningful decision?

To decide whether student scores are considered outliers, all student scores are first converted into a
standardized normal z-score. Then eachindividual scoreis compared to the weighted combination of all
the reference scores described above. The difference of these twoscores will provide a t-value of each
comparison. This t-value provides information as to how many standard deviations awaythe score is
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from the weighted combination of all the reference scores. Using this t-value, EVAAS can flag individual
scores as outliers.

There are different business rules for the low outliers and the high outliers, and this approach is more
conservative when removing a very high achieving score.

For low-end outliers, the rules are:
e The percentile of the score must be below 50.

e The t-value must be below -3.5 for EOGs and EOCs when determining the difference between
the score in question and the weighted combination of reference scores (otherwise known as
the comparison score). Inother words, the score in question must be at least 3.5 standard
deviations below the comparison score. For other assessments, the t-value must be below -4.0.

e The percentile of the comparison score must be above a certainvalue. This value depends on
the position of the individual scorein question but will need to be atleast 10 to 40 percentiles
above the individual percentile score.

For high-end outliers, the rules are:
e The percentile of the score must be above 50.

e The t-value must be above 4.5 for EOGs and EOCs when determining the difference between the
scorein question and the reference group of scores. Inother words, the score in question must
be atleast 4.5 standard deviations above the comparison score. For other assessments, the t-
value must be above 5.0.

o The percentile of the comparison score must be below a certainvalue. This value depends on
the position of the individual scorein question but will need to be atleast 30 to 50 percentiles
below the individual percentile score. There must be at least three reference scores usedto
make the comparisonscore.
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